QuakeC Reference
Manual

By:
David “DarkGrue” Hesprich
darkgrue@iname.com

Last Revision: August 21, 1997

Table of Contents

1.

INTRODUCGTION ..ottt ettt 1

11
11

WHAT ISQUAKEC? ..ooovveeveeeessesssesssssssssesssssssssnsssssssssssssassssssesssssssssnsssssssssssssasessssssssssssssssssasssssnessssassssssssanssssmsssnnssssssssassssasessens 1
CONTRIBUTIONSeoorvvensesesssssessssssssssesssssssssssssesssssssssnssssssssssessssessssessssessssnsssanessssessssnssssnssssassssnssssnesssnessssnssssnsssanessssmssssnsssassssanness 1

LEXICAL ELEMENTS ..ottt bbb 2

2.1
2.2.
2.3.
24.

24.1.
24.2.
24.3.

2.5.
2.6.

2.6.1.
2.6.2.
2.6.3.
2.6.4.
2.6.5.
2.6.6.
2.6.7.
2.6.8.

COMMENTS. ..ottt ens
MODEL PRAGMAoouviiticisececeeese e

DELIMITERS.....uiteteieteieteesteteetete st eteeste e ssesessese s ssa e sesessasensesese et asesbasessasesese e et anessanseteseaseaeseesaneebanessasessesessetensebanssseseatenssensensnsanens
WVHITESPAGCEoctiteuieteuieteuesteteseste e stesestesesessessssasessasesseseseesansssanestasensese s et ansabassseesessese e ebasebaseseabensese st et enesbensseebensese e etanetanesensensnns
IDENTIFIERSucteteieteueetesesteteetete st etesestesessesessese e ssaseesasessasensesese et aseebasessasessese e et anesbansetesesseseseesenssbanessasesseseseetensebansssaseasesssensensnsanens
LITERALS ...ttt

Numeric Literals
SEFING LITEIAIS. ...ttt b st b £ bbb £ e bRt bbbttt
Built-in FUNCtionsccooeceeveevieescnsee.

Animation Flags
BaSE ... ettt ettt beae st et et be e et eaeebeReeaebe b ebe s ebeAeebesseeebe b ebe e eteReebensehebetebe e ebensebensaaebeteteseebenntan
[T =T (o] OO OO
FraME DEFINITIONSocvcviieieeeet ettt et sttt bbb e bbb ebese e ettt et ese sttt ebebese e seetebebebean s st bebans
IMOOET INGIMIE ...ttt sttt ettt b s e st sttt et e b e ae e e bt et e b e Re s e et ebebeae sttt ebebese st et et et ebean st babebenes
Origin
SCAIE FFACION ...ttt ettt ettt bttt s et bt e b e se e et e b et et e Reae st bebebeRe st st ee et et ebebe e sttt ebene e et tane
SKIN FHIB....otteeeee ettt ettt et b e ettt be bt eae e s et b e bebese e se et et et et eReas e s b et ebese st sene et et et ebean s et b bebene e e e tane

DECLARATIONS AND TYPES ...t es s es s s essssssnesssen

31
3.2

33.
34.

DEFINITION OF VARIABLES
DEFINITION OF CONSTANTS (IMMEDIATES)oooevvvueessssnssssssessssssssssssesssssssssssssssssssesssssssssssssssssssessssssssssssssssssessssssssssssssssssnessssnns

Y PES ettt b e R R AR R SRR E SRR AR R R R R R SRR R e R R e AR R R E e e Rera
SIMPLE TYPES
3.2.2.
3.23.

Field Types
R et Yo e T (o I I 0T TR

NAMES AND EXPRESSIONS ..ottt bbbt st

4.1,
4.2.
4.3.

INAMESttt sttt ettt eae st ebe e et et e b eseebeseseebeneebase et esesseseseebaseesassesesessese s ebeneebensssesensese s ebansbaseasesensese s eteneetansasatensane
EXPRESSIONS......ctiitetiteieceete et te ettt e ae st e be e e be e esesesteaeseebeseeba st et esesseseseebaseesassesese s esessebeneabensssesensese st ebaneebesessesensesesetaneasansseesensans
OPERATORSAND EXPRESSION EVALUATION
43.1.
4.3.2.
4.3.3.
434,
4.35.

(oo [or @] 0TI = (o] OO PO
REIALIONAI OPEIALOLS ...ttt e s bbb e bbb s £ et E et R bbbt bbbttt
Binary Adding Operators
UNAEY AQING OPEIALOIS......ueieeereeeetrieietreseeeisesei et ses et se st ses e seseae bt ee e sebebeese b e s st seb £ aes b ee e st b et es st e st e b e bt ene
MUIIDIYING OPEIALOISoceeieeetre ettt e sttt b e s £t e s ettt ettt bt

STATEMENTS ..ottt E e R R e r et 12

51
52.
53.

ASSIGNMENT STATEMENTScuteutuetseseesssesseessessssssessssestssssssesssesstsssssssssssssessssesssesstasssssssssssstasssssssssssstsssssnssesassssssassssessesssssssassesns 12
IF STATEMENTS
L OOP STATEMENTScuttteutteetaetsesesessesesessesesesstaessssessseeeaesseseses et e s s sese b e et e b bt s b e e e s e e R b e et b b eE A bbb R R et bbbt b et 12

SUBPROGRAMS ...ttt bbbt 13

6.1.
6.2.
6.3.

SUBPROGRAM DECLARATIONccutitiitiitistesteseisteressesssssessssssssssesssssssssssssssssasssssssssssssssssssssssssssesssssessessssssssssesssssessessessessesssssssessesses 13
SUBPROGRAM SPECIFICATION ...cuiiuiitiititeseeesstssessesssssesssssssssesssssssssssssssssasssssssssssssssssssessssssssssssssssessssssssesssssssessesssssessasssssssessesses 13
SUBPROGRAM CALLS. ...ttt stesteses et sbesbestssbesssses st sbesbesbesbaseassessebssassbeabesbestessessebeebesbesbebessenssatebeabsebesbasbesbenssbsabesbesbesean 13

PREDEFINED CONSTANTS ..ottt sesseres s ss s ses s asss s ss s s s s s s 14

7.1

7.1.1

7.2

ENTITIES ettt R R R SRR A e e E AR R R R R e R AR R R R R e e R r s

Temporary Entities

ITEMS ettt R R h e e R R SRR E AR SR SRR R AR AR R R R R R AR R R R R e et R R r s

7.2.1. BEhAVIOr Of SOIIA ODJECLS ...ttt bbb bbb bbbt bt 16

7.2.2. IMIOVEIMIENTE TYPES ...ttt sttt bbbt s e bbb £ e £ e b bbb e b e £ e £t b bbb E et

7.2.3. Entity Damage Types

7.24. ENLIEY DA FIAQ- ...t eeeteeiieiriet sttt bbb s bbb bbb bbbttt

7.2.5. SPBAWNTIAGS ...ttt b R AR A bRttt
7.3. LIGHT EFFECTS

7.4. [1N O N 1=) ST
7.5. ProTOCOL MESSAGES
7.5.1 Message Routing

75.2. IMIESSAGE TYPES ...ttt bbbttt sttt bbb bbb £ e e s £ s bbb b4 £ 4 £t R bbb bbb e b e £ et b bbb bbbt
T8, SOUND .ucveietetiuesesestsseseseststsessssesasasesessssssesasesssessssssasasasessssssasasanssssensssesesasenssssssesesenssssnsnsesesesensssssesesesensssnsssesesesesenssnsesesesssssnsnsns

7.6.1. Attenuation

7.6.2. CRANNEL ...ttt sttt ettt e e bbb e ettt e b eae e e s bt ebebese e st e et et et ebeae s e bbb ebese e se et et et ebenn s et bebetens

8. PREDEFINED GLOBAL VARIABLES

8L, COOP...uucoteeeeeeseesseees st s ss s s s RS RS sReeseeesRenssneessennens
8.2, DEATHMATCH couvevveueeeveseessssesssssessssssessssssssssss s ssssesssssssssss s ss s s s s s s e 2SS s st s s s ssennsns
8.3, FORCE_RETOUGH.cvvuuressssssssssssssssssssesssssessssssessssssssssssessssssssssssessssssessssessssssesss s ssssesss s ssssssssssesssssssssssesssssessssssnssssenssns
84, FOUND_SECRETS ...ouurvvuuressssessssssssssssssssssssssassssssessssssssssssesssssassssssessssssssssssessssssesssssssssssssssssesssssasssssesssssesssssesssssnesssssansssanesssns
8.5, FRAMETIMEouuevveueeesesnessssesssssessssssesssssssssss s ss s s ssssssssss e s s s s s eSS R eSS s st s s s ssennnns
8.6, KILLED _MONSTERS........cervvvumrsssssesssssnssssssesssssssssssesssssssssssesssssssssssassssssesssssassssssesssssssssssssssssesssssassssssesssssnesssssesssssnsssssssnssssnesssss
8.7, MAPNAME ..uc.oveoe ettt st sss s sssse s s s s sss s s s SRS S s sS s SRsRR SRRt
8.8, MSG_ENTITY woouueeeussetessessssessssssssssssssssessssse s s s ssss s ss e s s s s s s Rs eSS s eSSt st s ssenenes
8.9, OTHER euvveeeevttess st sassessssessss s ssse s s s ss s s eS8 S s Ss 2 seReSSR eSS R sttt
8.10. PARML. . .PARMILGooovovernsveassssesessssesess st ssssessssssesssssessssss s sssesssss s ss s s s s bbb st s s st ssss s ensses
8.11. S
8.12. SERVERFLAGS. ...oo.vvvvveeessssssssssssssssessssssesssssassssssesssssesssssassssssessssss s s sss e ss s s s s e st s s ss st sen
813, TEAMPLAY wooteveeeeeettseee st sssssssssesssss s ssss s s s s s sRssR R S RS s R
B4, TIME . ioueeeeeeeeeseeeee et ss s s s R AR S e R R AR s Rt neensseneens
815, TOTAL_MONSTERS.....cvvvueersssseessssnssssssssssssassssssesssssssssssessssssesssssessssssesssssessssssesssssssssssasssssessssssssssssesssssesssssesssssnessssssnssssnessses
816, TOTAL_SECRETS...ovuureisssssssssssssssssssssssssssssssesssssssssssesssssssssssassssssesssssessssssessssssssssssssssssesssssassssssesssssssssssesssssnsssssssnssssnesssss
8.17. WORLD..ossrrereeseeerensssessssessssssenssssessssssenssens

9. ENTITIES ..o

0.1, T PES OF ENTITIES. .t itttrerertecueiets it tseseseeesesets bbb se e st e s b bbb s £ et e AR bbb b eE e £ £ e 42t e R e bbb A £ e £ e £t At A e b e b e b e b e b et eE st st e e ae bbb es
9.1.1 SEALIC NTITIES ...ttt ee ettt e bbb bR £ R b e b E R bbb e bR s Rttt n e
9.1.2. Temporary entities
9.1.3. DYNAMIC BNEITIES. ... v ettt sttt a e ses et s bbb b e s £ ek bRt bt s bbbttt

0.2, PREDEFINED ENTITY FIELDS.....cututtrtttrtrirtrteueusteistsssesesesesesesassssessssssssesesesesesssesesesss st st sesesessssseseb et ssse s et aeasaesebabebes et st sese e s ssantetebes
9.2.1. Fields Shared between QUAKE.EXE and QuakeC
9.2.2. Fields used only DY QUEKEC ...ttt bbbttt ettt

10. BUILT-IN FUNGCTIONS. ..ottt ses s sss s s ss s s es s ss s es st esses 36

10.1.
10.1.1.
10.1.2.
10.1.3.
10.1.4.
10.1.5.
10.1.6.
10.1.7.

10.2. BASIC VECTOR MATH FUNCTIONS
T0.2.1. MAKEVECIOLS.......cuivivitereteieiiie it eetebe bbbttt s bbbt ettt se e s be b et bbb bbb ae R b e b b et et et s s e e e se R e b e b e bbb bbb n e s bbb et et et st s s
10.2.2. NOIMANIZE ..ottt ettt e a bbb bbb bbb R A b bbbt e b st s st Ae R b e bbb b bbb s ae R bbb ettt en s e s
10.2.3.
10.2.4. vectoangles
O T <! (0) TR RR
10.2.6. VEOS..ciiiiieiiiereei st

10.3. COLLISION CHECKING FUNCTIONS
10.3.1. ChECKIOOM ...ttt et et bbb bbb bbb bbbt e b bbb b bbb s s e sttt eb et b st e s

L0.3.2. CRBCKPIOSoceeeceet ettt R e AR E bbb bR bbb bbb 38

0T R oo 101 070] 1 (=1 OO OO OO 38
10.3.4. traceline
10.4.
10.4.1.
10.4.2.
L0.4.3. PAITICIE..... ettt b R R R £ bR £ bR bbb bbb
10.5. CONSOLE FUNCTIONSctititeteteuetsesessssssasasessssssesesasssssessssssassssssssssssesesasessssssssesesassssssssssesesessssssssssesasssesssssnsesesassnsssssesesasasensnns 39
10.5.1.
10.5.2.
0T o o] ¢ T | OO TSSO 40
10.5.4.
10.6.
10.6.1.
10.6.2. coredump
0T R =" o | FO OO oUOEOETo TS OT OO UT
F0.6.4. BITOK c.eeeeeeeeeeeeee ettt ettt et sttt e e et ae et eaesa et et ebe e ebeaeebeseseebe s ebe s ebeRebebeseebensebess et eRebeseeeebetebe s eteReebenesaebeseae e etensebeneee
10.6.5. objerror
F0.6.6. BTACEOM ...ttt sttt e b ettt b et b bbb e R e R e e e bbb e bR st b b e b eRe A ettt ebebeRe ettt ebeneas e e rane
10.6.7. traCeON.......cccoceveeieeiercec et
10.7.
10.7.1. fiNd oo
10.7.2. findradius
O R 1o 01511 -SSR
TO.7.4. MAKESEALICvcveueiiiiietetetetceeeets ettt sttt sttt bbb e sttt e b et et e ae s s et et ebesesesese et et et ebeRe s s bebebesesese st seeb et et eae s as bt ebenene e e nnane
F0.7.5. NMEXEENL.....oeeecece ettt ettt et s e et et e be e et eaesteseseebe e eba s et eRebebeseebe s ebe st et eReebeseseeb et ebe s ebeReebenesaebe s eae e etensebeneee
FO.7.8. TEIMIOVE ...ttt ettt ettt ettt st et et e e et eae st eaesaebe e ebe s et eseebeseseebessebass et esebeseseebensebassebeseebeseseebensebess et esebessseebensebessetenssbeneee
FO.7.7. SEIMOUEL......ocvceeeee ettt sttt et e sttt b e ae s st ebebesesesese et et ebeRe e e bt ebebesesese e seb et et eae s as bt ebenene e e nane
FO.7.8. SPBWWIN ...ttt ettt ettt bbb e s bbb b b e e eEsE4£ £ £ AR e R bbb b b4 E 4 £ £ AR E bbb e A e A e £ £ £ £ e AR bR bbb S e e AR bbbttt
10.8. MOVEMENT FUNCTIONS......ccccovrrrereeerererenns
10.8.1. ChangeYawccccemreneeeenereenereeenens
10.8.2. AFOPLOFIOON ...ttt s bR b bbbt b s bbbt
OIS N 111011 (oo o | OO TSSO
10.8.4. setorigin
F0.8.5. SEISIZE ...uiiiitctceeeee ettt ettt sttt b et b et etttk b e Rt et b b e b e R e A se ettt eheRe s bbb ebeRe R ee et et et ebeRe ettt ebeneae e e erane
10.8.6.
10.9.
10.9.1.
10.9.2.
10.9.3.
10.10.
10.10.1. WVETEBANGIE <.ttt s s bbb 2R bRt e E bbbt et
10.10.2. WriteByte
10.10.3. WWITEBCRAL ...ttt ettt st sttt bbb e s bbb e b s e st et et e b e s e e ee st b et ebesesssese et et et ebenn s bt ebebesesssesntane
10.10.4. WWITEBCOONT ...ttt sttt ettt a bbb s e st b e b ebe s e st et et et e seaees b b et ebesessse e et et et ebene s s bebebetess e nntane

10.10.5. WriteEntity
10.10.6. WriteLong
10.10.7. WriteShort
10.10.8. WriteString
10.11. PRECACHING FUNCTIONSccctiiutuetiersrseesreestaessessessessss s sstsss sttt ssss sttt b sttt st s b s b
10.11.1. PrECACKNE._FIlB......eeeceee ettt b s bbb bbb s bbbt
10.11.2. precache_model
10.11.3. precache_sound
10.12. SERVER-RELATED FUNCTIONS

10.12.1. changelevel ...
10.12.2. setspawnparms
10.12.3. StUFFCM ..,
10.13. SOUND FUNCTIONS......ceeerrererereereeeeereennes
10.13.1. ambientsound............coceeveveeeeeeinirerenen.
10.13.2. SOUND ...ttt ittt ettt sttt et e ettt et et e b e e s st b et ebesesese e et et et ebeae s s b et et ebese e se et et et ebeRese s e bt ebebese e se et et et et eae s s asbebebanin

11. FUNCTIONS THAT ARE MANDATORY IN QUAKEC ..o sesessssssessssssessss s ssssessssssnssssses 47

111 BEHAVIOR OF PLAYERS.......cutrurueseseesessessessessessessessssssssesssssessesssssessssssesssssessssssssssssssssesasssssessssssssssssssssssssssssssssssesssssessessesses 47
0 O | - 1Y 0T O 47
11.1.2. PlayerPreThink

11.2. MANAGEMENT OF NETWORK GAME CLIENTS....coutruererserseeserseesseseessessessessesssssssssssssssssesssssessessssssssssssssssssssssssssssssesssssessessesses 47
11210 CHENECONNECL......coueeueereererersereesereee st ees s ses s ses s
11.2.2. ClientDisconnect
11.2.3.0 CHENEKII ...t
1124, PULCTENTINSEIVELcouioieiirireierieess et ses s 47
11.25. SetChangeParms
L1128, SEINBWPAINSovvrieeeireiee ettt

113
11.3.1.

11.3.2.
12. NETWORK PROTOCOLcotitirtiiireieiseie e iseesessesssstsssssssssssesesss st sttt 56t bbb bbbt 49

12.1. IMESSAGE STRUCTURES......ccutuiuetmtsetsestasssesssessesssesstsssssstassssssssssess s sssssesstssessssssesssssssssssssssssnssssssssstassessssssesssssssssssssssnsanans 49
12.1.1. Set View Position
12,02, SEEVIBW ANGIES ...ttt ettt ses et eb e a b e e bR S b 4282 R bbb b e e bt b b een e bt et r s
12.1.3. Temporary Entity
L2.014. SEECD THACK ..ttt sttt res ettt ses et s bbb e e e e 28 E £ e 8 £ 2R b £ ee e b b e b e bt b b n e bt et enseb s
12,05, FINAI IMESSAJEeueeereeeeirieietre et rese et sese et se bbb e bt e b s E £ b a2 8 £ e R b e b b e e b e b n et et bbb s
L2.0.8. SEIISCIBEN ...ttt sttt bbb s bR E b8 R b e b e e bt bR b e b r b s
I T R 11 (=T 1101535 o] o OO
12,08, KIIBO IMIONSEET ...ttt sttt 28 £8eb£eEe£eeb bbbt et s e bt et b s
T TR o1 [[T=To) OO OO

13. EXECUTION ..ottt ses s8R 51

131 PRESET GLOBALS....vutvstrseeserseessseessseessessessessessessessssssssssesssssesssssessessssssessessessesssssssssssssesssssessesssssassssssesssssssssssssssesssssessessesses

132. RUNAWAYS

133. PROFILING w..cevevneestrseresseseee s sseesesseessessessessesses s s s8R bR

134. COMPOSI TION OF FUNCTIONS. ... veeerersessersessessesssssesssssesssesessessesseessessesssssessessssssssssssssesssssessesssssessssssssssssssssssssssssssssssesssssessesses

135. PROGRAM FLOWcorrrrmeenmceenseessenseeneeeens
13.5.1. Client Connection/Changelevel
13.5.2. SUICIAR ..ottt
13.5.3. DIALN ...t
L13.5.4. RESPAWN ...oeeeeieceeeeieeeteesesesesesesesesesesese s ssesssesesesesesesesesessssesesesesesesesesesssssssnsssnssssesesesesesasenssssssesesesesesesssssssssnssnsesesesesesesnsnssnes

1A, TIPS & TRICKS. ...ttt ettt s st 88 £ s8££ bbb bbbt bbbt 56

14.1. (60 =TT

14.2. COMPILATION OF QUAKECccuitiiristetetesesesesaste e esssesessssssasasasessssssesesasesesessesesasasasessssnsesesasensssssnsesasasensnssssesesassnsssssnsesasessnsnns

14.3. FREQUENTLY ASKED QUESTIONSABOUT QUAKEC
14.3.1. How do | combing QUAKEC PALCNES?cueiieeureieeirireieires et eas s bbbttt seb b se st st enseten 56
14.3.2. When I compile valid code, the QuakeC compiler crashes, or | get error messages | know are false, what’s wrong?56
14.3.3. When I start a game with ““~-dedicated”, | get some messages, then nothing. What’s wrong?............cccveenenincnene. 57
14.3.4. How do | Change the VIBWPOINT?.........c.eiiieeieeis ettt sttt s bbbt en 57
14.3.5. How do | teleport a player int0 QNOTNEE SEIVEI? ..ottt ettt enseten 57
14.3.6. Can QuakeC bots be listed in the player rankings, or have proper shirt and pants colors?..........ccoevennenerncnene 57
14.3.7. How do I manipulate Strings iN QUAKEC?e.ieurrieirireieirieieire ettt et see bbb se bbb ensebes 58
14.3.8. How do I assemble a piecewise centerprint from multiple StriNGS?..........coiurrirninrnccr s 58
14.3.9. How do I move an entity i QUAKEC?........c...iiueuriieeirieieire ettt sttt seb e st s et enseten 58
14.3.10. How to change the velocity of an entity (make it bounce off WallS)?..........ccvrrienie e 58
14.3.11. How to calculate the direction a player iS faCiNg? ..ottt 58
14.3.12. How to send a message to a client When he 10gS IN?.......c.c it 59

14.4. WRITING QUAKEC CODEcutiiitiisieseseisesessssesassessssssesesasessssssssssasassnssssssesesessssssssssasesssssssssssesessnsssssssesasassssnsssssesesassnsssssesns 59

INDEX ..ottt es e s8££ 8888 60

1. Introduction

1.1.

1.1.

What is QuakeC?

QuakeC is a language similar to C. QuakeC source can be compiled with the QuakeC compiler to produce
PROGS.DAT, a file that Quake can load at startup. In that file Quake search the engines for various things
in the Quake World.

Monsters, player, buttons, weapons are the target of QuakeC, you cannot modify maps or graphics - those
must be edited with an external editor. Nor can you edit the functions of the core Quake engine; that is
proprietary code held by id Software.

To compile QuakeC programs you must have at least qcc.tar. gz from id Software; it contains
QCCDCS. EXE (the DOS QuakeC compiler — source and executable are available for Win 32 and Linux) and
all of the . QC files. Note that later versions of the QuakeC base source (such as PROGS106. ZI P) and
third-party compiliers (such as Lee Smith’'s ProQCC) exist and make QuakeC development considerably
easier.

Contributions

A major part of this document is taken from the QuakeC compilier source, by id Software. Other parts are
from Olivier Montanuy’s QuakeC Manual 1.0. Original . TXT format of the QuakeC Manual 1.0 is by Ferrara
Francesco.

All the information contained in this document is related to QuakeC, a language developed by and for id
Software. Quake, QuakeC, and the id Software QuakeC compiler are copyright © 1996, id Software.

2. Lexical Elements

2.1

2.2.

2.3.

The text of a program consists of the texts of one or more compilations. The text of each compilation is a
sequence of separate lexical elements. Each lexical element is formed from a sequence of characters, and
is either a delimiter, an identifier, a reserved_word, a numeric_literal, a character_literal, a string_literal, or a
comment. The meaning of a program depends only on the particular sequences of lexical elements that
form its compilations, excluding comments.

The text of a compilation is divided into lines. A semicolon terminates a line.

In some cases an explicit separator is required to separate adjacent lexical elements. A separator is any of
a space character, a format effector, or the end of a line, as follows:

m A space character is a separator except within a comment, a string literal, or a character literal.
m The end of aline is always a separator.
One or more separators are allowed between any two adjacent lexical elements, before the first of each

compilation, or after the last. At least one separator is required between an identifier, a reserved word, or a
numeric literal and an adjacent identifier, reserved word, or numeric literal.

Delimiters
A delimiter is either one of the following special characters
&)y *+ . - 1 5 < =>1 711
or one of the following compound delimiters each composed of two adjacent special characters
= = >= <= && ||
Each of the special characters listed for single character delimiters is a single delimiter except if this

character is used as a character of a compound delimiter, or as a character of a comment, string literal,
character literal, or numeric literal.

Whitespace

Whitespace characters are spaces, newlines, tabs, and page breaks. Whitespace is used to improve the
readability of your programs and to separate tokens from each other, when necessary. (A token is an
indivisible lexical unit such as an identifier or number). Whitespace is otherwise insignificant. Whitespace
may occur between any two tokens, but not within a token. Whitespace may also occur within a string,
when it is significant.

All whitespace characters are delimiters.
Identifiers

An identifier is a sequence of one or more non-delimiter characters. Identifiers are used in several ways in
Quake C programs.

m Certain identifiers are reserved for use as syntactic keywords; they should not be used as variables.

m Any identifier that is not a syntactic keyword can be used as an identifier.

A potential identifier is a sequence of non-delimiter characters with a maximum of 64 characters, beginning
with “A- Z”, “a- z”, or “_", and that can continue with those characters in addition to “0- 9”. Quake C is case-
sensitive.

The names of functions, variables and fields must be unique. For instance, you cannot define a variable
with the same name as a field.

Literals

A literal represents a value literally, that is, by means of notation suited to its kind. A literal is either a
numeric_literal, or a string_literal.

2.4.1. Numeric Literals

A real_literal is a numeric_literal that includes a point; an integer _literal is a numeric_literal without a point.
All numeric values in QuakeC are floating point values.

5
0.2
-25.0

A vector_literal is a set of three real_literals enclosed by single quotes (‘)Error! Bookmark not
defined..

‘000
'10 -12.5 0. 0001’
2.4.2. String Literals

A string_literal is formed by a sequence of graphic characters (possibly none) enclosed between two
guotation marks () used as string brackets.

“This is a string”
“This is a string foll owed by a new ine\n”
2.4.3. Built-in Functions

A built-in function immediate is a pound sign (“ #"), followed by an integer.

#1

#12

Comments

Comments are the same as in C++ (and many C languages). The beginning of a comment is indicated with
a double forward slash (/ /). Quake C ignores everything on a line starting with the forward double slash
until the end of the line.

An alternative form of comment (called an extended comment) begins with the characters “/ *” and ends
with the characters “*/”. As with ordinary comments, all of the characters of an extended comment,

3

including the leading “*/ " and trailing “*/ ”, are treated as whitespace. Comments of this form may extend
over multiple lines.

/1 followed by comments, until the next line.

/* encl ose an extended comrent */

2.6.

Model Pragma
Here are a few definitions that are commonly found in the QuakeC code defining the behavior of animated
models (monsters, players, etc.). The QuakeC compiler does not interpret most of this information, but it's
useful for the program modelgen that generates the models.
2.6.1. Animation Flags
$flags rotation
Rotation characteristic of the object. QuakeC does not interpret this field, but it's useful for the program
modelgen that generates the models. Possible values for $f | ags: 8 (the object keeps rotating, like armors,
etc.). Other values are not known yet.
2.6.2. Base
$base obj ect
QuakeC does not interpret this field, but it's useful for the program modelgen that generates the models.
The parameter obj ect is the name of a model file that will be used as a kind of starting position for
animation.
2.6.3. Directory
$cd <dir>
Specify the directory where your model file ((MDL) is located.
2.6.4. Frame Definitions

$frame [<frame> [<frame2> ...]]

This defines several animation frames of the object. For every animation frame defined, you must also
define a QuakeC frame function that will be called during this animation frame.

2.6.5. Model Name
$nodel nanme nane
The parameter nane is the name of the model file defining the object.
2.6.6. Origin
$origin vector

This field is not interpreted by QuakeC, but it's useful for the program modelgen that generates the models.
The parameter vect or is the location of the object within the bounding box, in the quake editor.

2.6.7. Scale Factor
$scal e nunber
This field is not interpreted by QuakeC, but it's useful for the program modelgen that generates the models.

The parameter nunber comes from the texmake number that is generated. You can use different values if
you want.

2.6.8. Skin File
$skin skinfile
This field is not interpreted by QuakeC, but it's useful for the program modelgen that generates the models.

The parameter ski nfil e is the name (without extension) of the .LBM file that defines the skin of the
object, as generated by the program texmake.

3. Declarations and Types

3.1

3.2

Types

A set of values, and a set of primitive operations that implement the fundamental aspects of its semantics
characterize a type. An object of a given type is a run-time entity that contains (has) a value of the type.

You cannot define new types from the existing ones. In particular, you cannot define new structures or
objects. These restrictions make QuakeC compare unfavorably even to BASIC.

You can add only fields to the most important type in QuakeC: entity
Simple Types
3.21.1. Void Types
voi d_declaration b void
An empty result, mostly used for definition of procedures (i.e. functions that return no result at all).
3.2.1.2. Floating Point Types
fl oati ng_point_declaration b float name

A floating point value. Floats are also used to store Boolean (TRUE, FALSE) values; integer values, like
counters; or bit flags.

A parsing ambiguity is present with negative constants: "a- 5" (five subtracted from a) will be parsed as "a",
then "- 5", causing an error. Separate the “- “ from the digits with a space ("a - 5") to get the proper
behavior.

3.2.1.3. Vector Types

vector _declaration b vector nane

A vector is made up of three float coordinates. Used to represent positions or directions in 3D space. Note
that single quotes (*) surround a vector. Do not use double quotes, they are reserved for strings.

If you declare a vector f oobar , then you can access it's x, y and z fields with the float types: f oobar _x,
f oobar _y, and f oobar _z.

3.2.1.4. String Types
string_declaration b string name

Represents a character string. Used to indicate file names, or messages to be broadcast to players. Use
"\ n “for a newline. The \ " escape can be used to include a quotation mark (*) in the string.

3.2.1.5. Entity Types
entity _declaration b entity name

An entity represents objects in the game, like things, players, and monsters. For instance, this is the type of
the entities self and other. The entity type is a structured type, made of fields.

3.2.2. Field Types

Contrary to the other types, the entity type is a reference to an instance of a structured object that contains
information of many different kinds, stored as fields of the entity object. Each field is given a name and a

type.

Some of the fields do not store values; instead, they store the function to be executed under certain
conditions, called methods.

If QuakeC was an object oriented programming language, method functions would be distinguished from
the other fields and you would be able to create new object types, with their own fields.

As QuakeC stands currently, all the field definitions are definitions of entity fields. So, anywhere in your
code you could add definition of new fields, and the compiler would interpret them as an extension of the
entity definition.
Here are all the possible definitions of entity fields, with their types:

.float nanme

.string nane

.vector nane

.entity nane

3.2.3. Reserved Field Types

In the first file read by the QuakeC compiler, DEFS. QC, there must be a definition for the entity fields and
world fields. This definition is hard coded, and cannot be changed without requiring a recompilation of the
core Quake engine.

In DEFS. (C, globals are defined before the special definition “voi d end_sys_gl obal s; “, while the entity
fields are defined before the special definition “voi d end_sys_fi el ds; ”. It's notimportant to understand
the tags, jjust don't modify DEFS. QC before those two tags, and you won't be in trouble. Better yet, avoid
modifying DEFS. QC altogether and use header files to define entity fields, globals, constants, and
prototypes.

Definition of Variables

variabl e_declaration b [local] sinple_ type name [= immediate][, nanme][=
<i mmedi at e>]

There are two levels of scoping. By default all variables are global: they can be accessed by any functions,
and they are shared by all the functions (and all the clients of a given network server, of course). Note that
variables cannot be givien an initial default value as part of their declaration.

Using the keyword local just before the declaration of a variable, makes the variable(s) visible only to the
function itself (i.e. it will be allocated on the stack).

Note that parameters of functions are treated like local variables, they are only visible to the function, but
they can be modified.

34.

Definition of Constants (Immediates)
constant _declaration b sinple_type name = val ue

Any global variable that is initialized by setting a value to it is actually assumed to be a constant. Since a
constant is in fact represented by immediate values, you should NEVER attempt to modify a constant by
giving it another value. Also, do not use another constant as the value for a constant. literals should only be
used as the values for constants.

4. Names and Expressions

4.1.

4.2.

4.3.

Names

Names can denote declared entities, whether declared explicitly or implicitly (see 3.1). Names can also
denote objects or subprograms designated by access values; the results of function_calls; protected
subprograms, single entries, entry families, and entries in families of entries. Finally, names can denote
attributes of any of the foregoing.

Expressions

An expression is a formula that defines the computation or retrieval of a value.

Operators and Expression Evaluation

The language defines the following five categories of operators (given in order of increasing precedence):

4.3.1. Logical Operators

&& /1 1ogical AND
[/1 logical OR
! /1 1ogical NOT
Take care thatinif () conditional expressions containing two or more logical clauses, all the clauses will

be evaluated before the condition test (like in BASIC, and unlike C). That means that if one part of your
condition is not always valid or defined, you had better decompose your i f () into two successive i f ()

statements, which should also make it faster.

4.3.2. Relational Operators

<= /1 less than or equal to

< /1 less than

>= // greater than or equal to
> /1 greater than

== // equal, like in C

= /1 not equal, like in C

4.3.3. Binary Adding Operators

+ // addition
- /] subtraction
& /1 bitw se AND

| /1 bitwise OR

10

4.3.4. Unary Adding Operators
+ /1 identity
- /1 negation
4.3.5. Multiplying Operators
* /1 multiplication

/ /1 division

11

5. Statements

51.

5.2.

53.

A statement is either simple or compound. A simple_statement encloses no other statement. A
compound_statement can enclose simple_statements and other compound_statements.

Assignment Statements
assi gnnent _statenent b variabl e nane = expression;

An assignment_statement replaces the current value of a variable with the result of evaluating an
expression.

If Statements

if statement b if (condition) sinple_statenment [el se sinple_statemnent]

if _statement b if (condition) { conpound_statenent [else
compound_st atenent] }

condition P bool ean_expression

An if statement selects for execution at most one of the enclosed simple_statement or
compound_statements, depending on the (truth) value of one or more corresponding conditions.

Note that a conditional statement returning a nonzero value always evaluates as TRUE, while a value of
zero evaluates as FALSE.

Loop Statements
whil e (condition) sequence_of statenents
do sequence_of statnents while (condition)

A loop_statement includes a sequence_of statements that is to be executed repeatedly zero or more times.

12

6. Subprograms

6.1.

6.2.

6.3.

A subprogram_declaration declares a procedure or function.
Subprogram Declaration
function_declaration b type (formal paraneter[, fornmal paraneter .]) nane

A subprogram must be declared before it is used.

Procedures are declared by specifying a type of voi d.
Subprogram Specification

procedure_specification b type (formal _parameter[, formal paraneter .])
name = { sequence_of _statements return(expression) }

function_specification b type (formal _paraneter[, formal_parameter .])
name = { sequence_of _statements return(expression) }

There is a maximum of eight (8) formal parameters.

frame_function_specification b void() framenane = [$framenum nextthink] {
sequence_of _statenents }

Frame functions (also called states) are special functions made for convenience. They are meant to
facilitate the definition of animation frames, by making them more readable.

Itis strictly equivalent to:

voi d() franmename = {

sel f. frame= $framenum // the nodel frame to displayed
sel f.nextthink = tinme + 0.1, /1 next frame happens in 1/10 of second
sel f.think = nextthink; // the function to call at the next frane

sequence_of _statenents }
Subprogram Calls

subprogramcall P name (actual parameter[, actual paraneter .]})

There is a maximum of eight (8) parameters.

13

7. Predefined Constants

7.1. Entities

7.1.1. Temporary Entities

/1

0

1

10

11

/1

point entity is a small point-like entity.

TE_SPI KE /1
TE_SUPERSPI KE /1
TE_GUNSHOT /1
TE_EXPLCSI ON /1
TE_TAREXPLOSI ON /1
TE_W ZSPI KE /1
TE_KNI GHTSPI KE /1
TE_LAVASPLASH /1
TE_TELEPORT /1
large entity is a 2 dinensiona
TE_LI GHTNI NGL /1
TE_LI GHTNI N& /1

TE_LI GHTNI NG3 /1

unknown

super spi ke hits (spike traps)
hit on the wall (Axe, Shotgun)
grenade/ m ssi | e expl osi on
expl osi on of a tarbaby
wizard's hit

hel | knight's shot hit

Cht hon awakes and falls dead
tel eport end

entity.

flash of the Shanbl er

flash of the Thunderbol t

flash in elnv to kill Chthon

14

7.2. Items
Values used for the entity field . i t ens.

| T_SHOTGUN = 1;

| T_SUPER_SHOTGWN = 2
| T_NAI LGN = 4;
| T_SUPER NAI LGN = 8;

| T_GRENADE_LAUNCHER = 16;
| T_ROCKET LAUNCHER = 32;
| T_LI GHTNI NG = 64;

| T_EXTRA WEAPON = 128;

| T_SHELLS = 256;

I T_NAILS = 512;

| T_ROCKETS = 1024;

| T_CELLS = 2048;

| T_AXE = 4096;

| T_ARMORL = 8192;

| T_ARMOR2

16384;

| T_ARMOR3

32768;
| T_SUPERHEALTH = 65536;

| T_KEY1

131072;

| T_KEY2

262144,
IT_INVISIBILITY = 524288;
| T_I N\VULNERABI LI TY = 1048576;

ITSUT

2097152,

| T_QUAD = 4194304:

7.2.1. Behavior of Solid Objects
Values used with the entity field . sol i d.

SALID_NOT = 0

SALID TR GGER = 1;

SCQLI D _BBOX = 2;

SCQLI D_SLI DEBOX = 3;

SOLI D BSP = 4;

/1

/1

/1

/1

/1

/1

/1

/1

/1

/1

/1

/1

no interaction with other objects:
inactive triggers

touch on edge, but not bl ocking active
triggers: pickable itens (.MDL nodel s,
i ke arnors)
touch on edge, bl ock: pickable itens

(.BSP nodel s, |ike amo box, grenades,
m ssil es

touch on edge,
nmonst er s
BSP clip, touch on edge,

pl atforns, doors, mssiles

but not an onground: nost

bl ock: buttons,

16

7.2.2. Movement Types
Values used for entity field . novet ype.
MOVETYPE_NONE = O; /'l never noves
/1float MOVETYPE_ANGLENOCLIP = 1;

[/float MOVETYPE_ANGLECLIP = 2;

MOVETYPE_WALK = 3; /1 wal ki ng players only

MOVETYPE_STEP = 4; /1 wal ki ng nmonst er

MOVETYPE_FLY = 5; /1 hovering flight: nmeant for flying
/1 monsters (and pl ayers)

MOVETYPE_TGCSS = 6; /1 ballistic flight: nmeant for gibs and the
/1 like

MOVETYPE_PUSH = 7; /1 not bl ocked by the world, push and
/1 crush neant for doors, spikes and
/1 crushing platforns

MOVETYPE_NOCLI P = 8; /1 not bl ocked by the world

MOVETYPE_FLYM SSI LE = 9; /1 like fly, but size enlarged agai nst
[/ nmonsters: meant for rockets

MOVETYPE_BOUNCE = 10; /1 bounce off walls

MOVETYPE_BOUNCEM SSI LE = 11 /1 bounce off walls, but size enlarged
/1 agai nst monsters: meant for grenades
7.2.3. Entity Damage Types

Values used for entity field . t akedanage. Most damageable entities have DAMAGE Al M so that when
they chew on a grenade, it explodes. If you make an entity DAMAGE _YES, the grenades will bounce off it.

DAMAGE NO = 0; /1 Can't be damaged

DAMAGE YES = 1; /! Grenades don't expl ode when touching
/1 entity

DAMAGE AIM = 2; /1 Genades expl ode when touching entity

17

7.2.4. Entity Dead Flag
Values used for the entity field . deadf | ag.
DEAD _NO = 0;
DEAD DYI NG = 1;
DEAD DEAD = 2;

DEAD RESPAVWNABLE = 3

/1

/1

/1

/1

still living
dyi ng (hel pl ess)
really dead

dead, but can respawn

18

7.2.5. Spawnflags

The entity field . spawnf | ags is a bit field, whose interpretation depend on the concerned entity. There is
quite a bit of a hack here that could cause unexpected bugs in the QuakeC code.

DOOR_START_CPEN = 1; /1 allowentity to be lighted in cl osed
/1 position

SPAVW CRUCI FI ED= 1, /1 for zonbie

PLAT LOW TRI GGER = 1; /1 for func_pl at

SPAVWNFLAG NOTOUCH= 1;

SPAVWNFLAG NOMESSACGE= 1;

PLAYER ONLY = 1;

SPAWNFLAG SUPERSPI KE = 1; /1 for spike shooter

SECRET_OPEN _ONCE = 1; /1 secret door, stays open

PUSH ONCE = 1;

WEAPON _SHOTGUN = 1; /1 weapon, shotgun

H ROTTEN = 1; /1 health, rotten (5-10 points)

VWEAPON Bl & = 1; /1 items

START_OFF = 1, /1 light, is off at start.

SILENT = 2;

SPAWNFLAG LASER = 2; /1 for spike shooter

SECRET _1ST LEFT = 2; /1 secret door, 1st nove is left of arrow
WEAPON ROCKET = 2; /1 weapon, rocket

H MEGA = 2; /1 health, mega (100 points)

DOOR DONT_LI NK = 4;

SECRET_1ST _DOM = 4; /1 secret door, 1st nove is down fromarrow
WEAPON_SPI KES = 4; /1 weapon, nail gun

DOOR_GOLD KEY = 8§;

SECRET_NO SHOOT = 8; /1 secret door, only opened by trigger
WEAPON BI G = 8; /1 weapon, super nodel

DOOR_SI LVER KEY = 16;

SECRET_YES SHOOT = 16; /1 secret door, shootable even if targeted

19

DOOR TOGGLE = 32;
7.3. Light Effects

Values used by the entity field . ef f ect s.

EF BRI GHTFI ELD = 1; /1 glowing field of dots
EF_MJZZLEFLASH = 2;
EF BRI GHTLI GHT = 4;
EF D M.IGAT = 8§;

7.4. Point Contents
CONTENT_EMPTY = -1; /1 enpty area
CONTENT_SCQLID = -2; /1 totally solid area (rock)
CONTENT_WATER = - 3; /1 pool of water
CONTENT_SLI ME = -4; /1 pool of sline
CONTENT_LAVA = -5; Il lava
CONTENT_SKY = - 6; /1 sky

7.5. Protocol Messages

7.5.1. Message Routing

Values used by the Wi t e* () functions.

MBG _BRQADCAST = O0; /1 unreliable message, sent to all

MBG ONE = 1; /1 reliable nmessage, sent to nmsg_entity
MG ALL = 2; /1 reliable nessage, sent to all
MSGINT = 3; /Il wite to the init string

Use unreliable (but fast) messages, when it's of no importance if a client misses the message (examples:
sound, explosions, monster deaths, taunts, etc.). Use reliable messages when it's very important that every
client sees the message, lest a game inconsistency occur (examples: shots, player deaths, door moves,
game ends, and CD track changes).

7.5.2. Message Types

These are some of message types defined in the Quake network protocol. Values are used by the
Wit eByte() function.

SVC_SETVI EWPCRT = 5;
SVC_SETANGLES = 10;
SVC_TEMPENTITY = 23;

20

SVC KI LLEDVMONSTER = 27;
SVC_FOUNDSECRET = 28;
SVC | NTERM SSI ON = 30;
SVC FINALE = 31;

SVC CDTRACK = 32;

SVC SELLSCREEN = 33;

SVC _UPDATE = 128;
7.6. Sound

7.6.1. Attenuation

Those values are meant to be used with the functions sound() and anbi ent sound() as values for the

parameter at t enuat i on.

ATTN_NONE = 0;
ATTN_NCRM = 1;
ATTN | DLE = 2;

ATTN_STATIC = 3;

7.6.2. Channel

/1 full volunme everywhere in the |evel
/1 nor nal
11 [FI XMVE]
11 [FI XMVE]

These values are meant to be used with the function sound() as values for the parameter channel .

CHAN_AUTO = 0;
CHAN_WEAPCN = 1,
CHAN VA CE = 2;

CHAN_| TEM

3;

CHAN_BODY = 4;

[/ create a new sound

/1 replace entity’'s weapon noi se
/1 replace entity’'s voice

/1 replace entity’'s item noise

/1 replace entity’'s body noi se

21

8. Predefined Global Variables

8.1

8.2.

8.3.

8.4.

8.5.

8.6.

8.7.

These variables are accessible in every function. QuakeC functions are not supposed to modify them
directly.

coop
fl oat coop; /! a Bool ean value, 0 or 1
TRUE if playing cooperative.
deathmatch
fl oat deat hmat ch; // a Boolean value, 0 or 1
TRUE if playing deathmatch.
force _retouch
float force_retouch; /1 counter
Force all entities to touch triggers next frame. This is needed because non-moving things don't normally

scan for triggers, and when a trigger is created (like a teleport trigger), it needs to catch everything. It is
decremented each frame, so it is usually set to 2 to guarantee everything is touched.

found_secrets

float found _secrets; /1 counter
Number of secrets found.
frametime

float frametime; // in seconds
No idea what this can be. Used only when jumping in water.
killed_monsters

float killed nonsters; /1 counter
Store the total number of monsters killed.
mapname

string mapnane;

Name of the level map currently being played, like "start".

22

8.8.

8.9.

8.10.

8.11.

8.12.

8.13.

8.14.

8.15.

8.16.

msg_entity
entity nmsg_entity;

If you want to send a message to just one entity e, then set nsg_entity = e and send the message with
flag MSG_ONE, instead of MSG_ALL.

other
entity other;
The object concerned by an impact, not used for thinks.

parml...parml6

self
entity self;
The entity that is subject to the current function.
serverflags
fl oat serverfl ags; /1 bit fields

Propagated from level to level, and used to keep track of the completed episodes. Ifserverflag & (1
<< e) is TRUE, then episode e was already completed. Generally equal to pl ayer . spawnfl ags & 15.

teamplay
fl oat teanpl ay; /! a Boolean value, 0 or 1
TRUE if playing by teams.
time
float tinme; /1 in seconds
The current game time in seconds. Note that because the entities in the world are simulated sequentially,
time is NOT strictly increasing. An impact late in one entity's time slice may set time higher than the think
function of the next entity. The difference is limited to 0.1 seconds.
total monsters
float total nonsters; /1 counter
Total number of monsters that were spawned, since the beginning of the level.
total secrets

float total secrets; /1 counter

Number of secrets found by the players. Affected only by trigger_secret.

23

8.17. world
entity world;

The server's world object, which holds all global state for the server, like the deathmatch flags and the body

queues.
fl oat parnti; /1 items bit flag (I T_SHOTGUN | | T_AXE)
fl oat parn®; /1 health
fl oat parn8; /1 arnorval ue
fl oat parn¥,; /1 amro
fl oat parnb; /1 amro
fl oat parn®; /1 amro
fl oat parnv; /1 amro
fl oat parn8; /1 weapon
fl oat parn®; [/l armortype * 100

float parmlO, parmll, parml2, parml3, parml4, parml5, parml6;

These parameters seem to be a bit of hack. They are used when a client connects. Spawnparms are used
to encode information about clients across server level changes.

24

9. Entities

In Quake, monsters, players, items, and the level itself are all entities.
9.1. Types of Entities

There are three kinds of entities, and you will encounter all of them in the QuakeC code.

9.1.1. Static entities
A static entity doesn't interact with the rest of the game. These are flames (pr ogs/ f | ane. mdl), lights,
illusionary objects, and the like. It is never be necessary to reference such an entity, so they don't get an
entity reference number.
A static entity will be created by the function:

makest ati c()

which causes a spawnstatic message to be sent to every client. A static entity cannot be removed once
created. The maximum number of static entities is 127.

9.1.2. Temporary entities

A temporary entity is a short life time entity. For instance, Quake uses these entities for hits on the wall
(point-like entities) or for the Thunderbolt flash (line-like entities), gun shots, and anything that is not
supposed to last more than one frame.

Sending a valid temporary entity message will create a temporary entity. A temporary entity need not be
removed it disappears by itself.

9.1.3. Dynamic entities

A dynamic entity is anything that changes its behavior or its appearance. These are ammunition boxes,
spinning armors, player models and the like.

A dynamic entity will be created by the sequence:
entity = spawn();
setnodel (entity, "progs/entity.mdl");
setsize(entity, vector_mn, vector_nax);
setorigin(entity, position);

It will have to be removed by the function:
remove(entity);

The maximum number of dynamic entities is 449.

25

9.2.

Predefined Entity Fields

These are the fields that are available in the entity objects (like self, other). Beware that this is not true
object oriented programming: there is no protection when accessing those fields, and no guarantee on the
validity of values. So if you put garbage there you will probably crash the game.

9.2.1. Fields Shared between QUAKE.EXE and QuakeC

These fields describe the most common entity fields. They are shared between the C code of
QUAKE.EXE, and the QuakeC code of PROGS.DAT.

Some of the fields are managed by the C code: you can read their value, but YOU SHOULD NEVER
MODIFY THEIR VALUE DIRECTLY (there are special built-in functions for that).

9.2.1.1. Technical
entity chain; /1 next entity, in a chain list of entities

John Cash advises programmers to not use the chain field. The chain field gets written by some of the built-
in functions (like f i ndr adi us()). If you need to make a linked list, make your own link field.

float Itine; /1 local time for entity
float tel eport tine; /1 to avoid backing up
fl oat spawnfl ags;

9.2.1.2. Entity Appearance

fl oat nodel i ndex; /1 index of nodel, in the precached |i st
string classnang; /1 spawn function
string nodel; /1 the nane of the file that contains the

/1 entity nodel

float frane;

This is the index of the currently displayed model frame. Frames must be defined by a $f r ane construct in
the model file, and manipulated in the code as $xxx (where xxx is the name of the frame).

float skin;
This is the index of the model skin currently displayed. If your model has more than one skin defined, then

this value indicates the skin in use. You can change it freely, as long as it remains in a valid range. For
instance, it's used by the armor model to show the yellow, red or green skin.

26

float effects;

This is a flag that defines the special light effects that the entity is subject to. This can supposedly be used
to make an entity glow, or to create a glowing field of dots around it.

9.2.1.3.

Position in 3D

Quirks: setting the angles on a player entity doesn't work.

vect or

vect or

vect or

vect or

vect or

vect or

vect or

vect or

9.2.1.4.

origin;

m ns

maxs;

Si ze;

absm n;

absmax;

ol dori gi n;
angl es;

Situation of the Entity

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

position of node

originx, originy, origin_z

boundi ng box extents reletive to origin
mns_x, mns_y, mns_z

boundi ng box extents reletive to origin
Maxs_x, Maxs_y, naxs_z

the x, y and z lengths of the entity's
boundi ng box; obtained by subtracting
absm n from absmax

size_Xx,size y,size z

| ower left-hand corner of the

entity's bounding box relative to the
entity's origin

absmn_x absmn_y absmn_z

origin + mns and maxs

absmax_x absnmax_y absnax_z

ol d position

= 'pitch_angle yaw angle flip_angle'

Since groundenti ty is used nowhere in PROGS.DAT, it's meaning is just a wild guess from a similar
field in messages.

float waterlevel;

fl oat watertype;

11

11

11

0 not in water, 1 = feet, 2 = wai st,

3 = eyes

a content val ue

27

entity groundentity;

9.2.1.5.

vect or

vect or

vect or

fl oat

fl oat

fl oat

9.2.1.6.

Movement in 3D
vel oci ty;

avel oci ty;

punchangl e;
movet ype
yaw _speed;
solid;

Monster Behavior

entity goalentity;

fl oat

i deal _yaw,

fl oat yaw speed;

string target;

string targetnane;

9.21.7.

Automatic Behavior

11

11

11

11

11

11

11

11

11

11

11

11

11

11

indicates that the entity noves on the

ground

' speed_x speed_y speed_z'

"pitch_speed yaw speed 0', angle

velocity

tenp angl e adjust from danage or recoi
type of novenent

rotati on speed

specifies if entity can bl ock novenent

nonster's novetarget or eneny
nonster's ideal direction, on paths
nonster's yaw speed

target of a nonster

nane of the target

When you want an entity to do something specific after a certain delay (exploding, disappearing, or the
like...), you set. next t hi nk to that delay (in seconds), and set . t hi nk to the function to execute.

f1 oat
voi d()
voi d()
voi d()

voi d()

vect or

next t hi nk
t hi nk;

t ouch;
use;

bl ocked;

novedi r;

11

11

11

11

11

11

11

11

next tine when entity nust act

function i nvoked when entity nust act
function invoked if entity is touched
function invoked if entity is used
function for doors or plats, called when
can't push ot her

nostly for doors, but also used for

wat er j unp

28

string
f1 oat
string
string
string
string
9.2.1.8.
f1 oat
f1 oat
f1 oat

fl oat

fl oat

fl oat

nessage; /1 trigger nmessages

sounds; /1 either a CD track nunber or sound nunber
noi se; /1 sound played on entity noise channel 1
noi sel,;

noi se2;

noi se3;

Player/Monster Statistics and Damage

deadf | ag; /1 tells if an entity is dead

heal t h; /1 health |evel

nmax_heal t h; /1 players maxi mumhealth is stored here
t akedamage; /1 indicates if entity can be danaged
dng_t ake;

dng_save;

Damage is accumulated through a frame and sent as one single message, so the super shotgun doesn't
generate huge messages.

entity dng_inflictor; /1 entity that inflicted the danmage

/1 (player, nonster, mssile, door)

29

9.2.1.9.

fl oat

fl oat

fl oat

fl oat

Player Inventory
itens;

ar nor t ype;

ar mor val ue;

weapon;

string weaponnodel ;

fl oat

fl oat

fl oat

fl oat

fl oat

fl oat

fl oat

weaponf r ane;
current ammo;
amo_shel | s;
amo_nai | s;

anmo_r ocket s;

amo_cel | s;

i mpul se;

11

11

11

11

11

11

11

11

11

11

11

11

bit flags

fraction of danmge absorbed by arnor
arnor | evel

one of the IT_SHOTGUN, etc flags
entity nmodel for weapon

frane for weapon node

ammo for current weapon

remai ni ng shells

remaining nails

remai ni ng rockets and grenades

remai ning |ightning bolts

weapon changes

When set to 0, the player's weapon doesn't change. When different from zero, this field is interpreted by the
QuakeC impulse command as a request to change weapon (see | npul seComand()).

9.2.1.10.

Player Combat

entity owner;

entity eneny;

fl oat buttonO;
float buttonl

fl oat button2;

vector view ofs;

float fixangl e;

11

11

11

11

11

11

11

11

11

11

11

11

entity that owns this one
(mssiles, bubbles are owned by the
pl ayer)

personal eneny (only for nonster
entities)

fire

use

junp

position of player eye, relative to
origin

set to 1 if you want angles to change

now

30

vector v_angl e; /1 view or targeting angle for players

fl oat ideal pitch; /1 calculated pitch angle for | ookup up
/1 sl opes
entity aiment; /l aimed entity?

9.2.1.11. Deathmatch

float frags; /1 nunber of frags

string netnane; /1 nane, in network play

fl oat col or nap; /1 colors of shirt and pants
float team /1 team nunber

float flags;
9.2.2. Fields used only by QuakeC

These entity fields are used only by QuakeC programs, and are never referenced by the C code of
QUAKE.EXE. So you can do whatever you want with the values, so long as it's compatible with what other
QuakeC modules do.

If the fields defined here are not suitable for you, you can define new fields, by adding them at the end of the
definition of fields. As a matter of fact, the number of fields in an entity (hence the size of all the instances of
entity objects) is determined by QuakeC: in the PROGS.DAT header, a value named entityfiel ds
indicates to QUAKE.EXE the size of the entity object. Beware however that the more fields you add, the
more each entity will suck memory. Add just one float (4 bytes) and it will take, in memory, 4 bytes times the
number of entities.

The best way is to share fields between distinct classes of entities, by reusing the same position for another
kind of field. If the QuakeC Compiler was a real object-oriented compiler, that would be done very safely by
single-inheritance (multiple-inheritance would be a deadly mistake). You will also notice that id Software has
made quite a lousy usage of most of the fields, defining much more than were actually needed, since they
are only used by a few entities.

9.2.2.1. World Fields

string wad; /1 name of WAD file with m sc graphics
string map; /1 name of the map being pl ayed
fl oat worl dtype; /1 see bel ow

9.2.2.2. QuakeEd
string killtarget;
float |ight_Iev; /1 not used by gane, but parsed by I|ight
/1 utility

float style;

31

9.2.2.3. Monster Behavior

These functions are called when these specific events happen:

voi d() th_stand; /1 when stands idle

voi d() th_walk; /1 when is wal king

void() th_run; /1 when is running

void() th _mssile; /1 when a mssile cones
voi d() th_nel ee; /1 when fighting in nelee
voi d() th_die; /1 when dies

void(entity attacker, float danmage) th_pain;

Executed when the monster takes a certain amount of damage from an attacker (a player, or another
monster). Usually causes the monster to turn against the attacker.

9.2.2.4. Monsters
entity ol deneny; /1 mad at this player before taking damage
fl oat speed;
float lefty;
float search_tineg;
float attack state;
fl oat pauseti ne;

entity novetarget;

32

9.2.2.5.

fl oat

fl oat

fl oat

fl oat

fl oat

fl oat

fl oat

fl oat

fl oat

fl oat

fl oat

fl oat

fl oat

fl oat

fl oat

fl oat

fl oat

fl oat

fl oat

fl oat

fl oat

Player

wal kf rarre;
attack_finished;

pai n_fi ni shed;

i nvi nci bl e_fi ni shed;
i nvi si bl e_fini shed;
super _damage_fi ni shed;
radsui t _fini shed

i nvinci bl e_tine;

i nvi nci bl e_sound,;
invisible tine;

i nvi si bl e_sound,;
super _time;

super _sound;
rad_tine;

fly sound;

axhi t re;

show hosti | e;

jump_f1ag;
swimflag;
ai r_finished;

bubbl e_count;

string deat htype;

11

11

11

11

11

11

11

11

11

11

11

11

ti nme when pain sound is finished

ti me when player ceases to be invincible

ti ne when player ceases to be invisible

ti me when quad shot expires?

TRUE if hit by axe

set to time + 0.2 whenever a client
fires a weapon or takes danage

pl ayer junp flag

pl ayer sw nmm ng sound fl ag

when tine > air_finished, start drowning
keeps track of the nunber of bubbles

keeps track of how the player died

33

9.2.2.6. Objects

string ndl;
vector mangl e;
vector ol dorigin;
float t_|ength;

float t_w dth;

9.2.2.7. Doors

vector dest;

vector dest1;

vector dest2;

float wait;

fl oat del ay;

entity trigger _field;
string noise4,;

float aflag;

fl oat dny;

/] nodel nane?
/1 angle at start. 'pitch roll yaw

/1 only used by secret door

/1 time fromfiring to restarting
/1 time fromactivation to firing

/1 door's trigger entity

/1 damage done by door when hit

34

9.2.2.8. Miscellaneous
float cnt;
voi d() think1,;
vector finaldest;
vector finalangle;
Il triggers
float count;
/1 plats/doors/buttons
float |ip;
float state;
vect or posl,
vector pos2;
fl oat height;
/1 sounds
float waitmn;
float waitnmax;
float distance;

fl oat vol une;

/! counter

/1 for

/1 top

counting triggers

and bottom positions

35

10. Built-in Functions

These are the built-in functions of QuakeC. Since they are hard-coded in C, they cannot be redefined, but
they are very fast.

10.1. Basic Math Functions
10.1.1. anglemod
fl oat angl enod(fl oat angl e)
Returns angle in degree, modulo 360.
10.1.2. ceil
float ceil (float val)
Returns val , rounded up to the integer above (like the equivalent function in C).
10.1.3. fabs
float fabs(float val)
Returns absolute value of val (like the equivalent function in C).
10.1.4. floor
float floor(float val)
Returns val , rounded up to the integer below (like the equivalent function in C).
10.1.5. ftos
string ftos(float val ue)
Float to string: converts value to string.
10.1.6. random
fl oat randon()
Returns a random floating point number between 0.0 and 1.0.
10.1.7. rint
float rint(float val)

Returns val , rounded up to the closest integer value.

36

10.2. Basic Vector Math Functions

10.2.1. makevectors
voi d makevect ors(vector angl es)
Constructs an angle = 'pitch yaw 0'. Calculates the unit vectors (a length of 1 "unit") pointing forward, to the

right, and up (positive X, y and z directions, respectively) from the given angle. Result is returned in the
global variables:

vector v_forward, /1 points forward
vector v_up; /1 points up
vector v_right; /1 points toward the right

10.2.2. normalize
vector normalize(vector v)

Returns a vector of length 1. Gives the vector collinear to v, but of length 1. This can be useful for
calculation of distance along an axis.

10.2.3. vlen
float vlen(vector v)
Returns the length of vector v (never < 0).
10.2.4. vectoangles
vect or vectoangl es(vector v)

Returns vector = ‘pitch yaw 0 '. Vector to angles: calculates the pitch angle (aiming) and yaw angle
(bearing) corresponding to a given 3D direction v.

10.2.5. vectoyaw
fl oat vectoyaw vector v)

Returns an angle in degrees. Vector to yaw: calculates the yaw angle (bearing) corresponding to a given
3D direction v.

10.2.6. vtos
string vtos(vector v)

Vector to string: convert a vector into a string.

37

10.3. Collision Checking Functions

10.3.1. checkbottom
fl oat checkbottom(entity e)

Returns TRUE or FALSE. Returns TRUE if on the ground. Used only for jumping monsters that need to
jump randomly not to get hung up (or whatever it actually means).

10.3.2. checkpos
scal ar checkpos (entity e, vector position)

CURRENTLY DISABLED. DO NOT USE. Returns TRUE if the given entity can move to the given position
from its current position by walking or rolling.

10.3.3. pointcontents
fl oat poi ntcontents(vector pos)

Returns the contents of the area situated at position pos. Used to know if an area is in water, in slime or in
lava. Makes use of the BSP tree, and is supposed to be very fast.

10.3.4. traceline
tracel i ne(vector v1, vector v2, float nononsters, entity forent)

Where: vl1= start of line; v2= end of line; nomonster= if TRUE, then see through other monsters, else
FALSE; forent= ignore this entity, it's owner, and it's owned entities; if forent = world, then ignore no entity.

Trace a line of sight, possibly ignoring monsters, and possibly ignoring the entity f or ent (usually, forent =
self). This function is used very often, tracing and shot targeting. Bounding boxes and exact BSP entities
blocks traces. Returns the results in the global variables:

float trace allsolid; /'l never used
float trace startsolid; /'l never used
float trace_fraction; /1 fraction (percent) of the line that was

[/ traced, before an obstacle was hit;
/! equal to 1 if no obstacle were found
vector trace_endpos; /1 point where |line ended or nmet an
/] obstacle
vector trace_pl ane_normal ; /1 direction vector of trace (?)
float trace_plane_dist; /1 distance to inpact along direction

/1 vector (?)

38

entity trace_ent; /1 entity hit by the line created by
/'l traceline(); valid only if
/1 trace fraction != 1.0

float trace_inopen; /1 Boolean, true if |line went through non-
/1 water area.

float trace_inwater; /1 Boolean, true if |line went through

/1l water area.
10.4. Combat Functions
10.4.1. aim

vector ain(entity e, float m ssil espeed)

Returns a vector along which the entity e can shoot. Usually, e is a player, and the vector returned is
calculated by auto aiming to the closest enemy entity.

10.4.2. checkclient
entity checkclient()
Returns client (or object that has a client enemy) that would be a valid target. If there are more than one
valid options, they are cycled each frame. If (sel f. origin + self.vi ewofs) is notin the PVS of the
target, O (FALSE) is returned.
10.4.3. particle

void particle(vector origin, vector dir, float color, float count)

Where: origin = initial position; dir = initial direction; color = color index (color = 0 for chunk, color = 75 for
yellow, color =73 for blood red, color = 225 for entity damage); count = time to live, in seconds.

Create a patrticle effect (small dot that flies away).
10.5. Console Functions
10.5.1. cvar
float cvar(string consol e vari abl e)

Returns the value of a console variable. Note that this reads the console variables of the server only and
cannot read the console variable of network server clients. Note also that some console variables cannot
be read by cvar () at all (such as “maxplayers”).

10.5.2. cvar_set

float cvar_set(string consol e variable, string val ue)

Sets the value of a console variable.

39

10.5.3. dprint
void dprint(string text)

Prints a message to the server console. This function was removed from later versions of the Quake
engine.

10.5.4. localcmd
void | ocal cmd(string text)

Execute a command on the server, as if it had been typed on the server's console. Don't forget the “\ n“
(newline) at the end, otherwise your command will not be executed, and will stand still on the console

window.

Examples:
| ocal cnd("restart\n"); /1 restart the |evel
| ocal cnd("teanplay 1\n"); /1 set deathnmatch node to teanpl ay
| ocal cnd("kill server\n"); /1 poor server...

10.6. Debug Functions
10.6.1. break
voi d break()
Exit the programs.
10.6.2. coredump
voi d coredunp()
Print all entities.
10.6.3. eprint
void eprint(entity e)
Print details about a given entity (for debug purposes).
10.6.4. error
void error(string text)
Print an error message.
10.6.5. objerror
voi d objerror(string text)

Print an error message related to object self.

40

10.6.6. traceoff
voi d traceoff ()
End traces started by t r aceon() .
10.6.7. traceon
voi d traceon()

Start tracing functions, end them with t r aceof f () .

10.7. Entity Management Functions

10.7.1. find
entity find (entity start, .string field, string match)

Where: start = beginning of list to search (world, for the beginning of list); field = entity field that must be
examined (ex: targetname); match = value that must be matched (ex: other.target).

Returns the entity found, or world if no entity was found. Searches the server entity list beginning at start,
looking for an entity that has entity.field = match.

Example: find the first player entity
e = find(world, classnane, "player");
Take care that field is a name of an entity field, without dot, and without quotes.
10.7.2. findradius
entity findradius(vector origin, float radius)
Where: origin = origin of sphere; radius = radius of sphere.

Returns a chain of entities that have their origins within a spherical area. The entity returned is e, and the
next in the chain is e. chai n, until e == FALSE. Typical usage: find and harm the victims of an explosion.

e = findradius(origin, radius)
while(e) { T Danmage(e, ...); e = e.chain}
10.7.3. lightstyle
void lightstyle(float style, string val ue)
Where: style = index of the light style, from 0 to 63; value = (ex: "abcdefghijkimlkjihgfedcb™).
Modifies a given light style. The light style is used to create cyclic lighting effects, like torches or teleporter

lighting. There are 64 light styles, from 0 to 63. If style is not strictly comprised in these values, the game

may crash. Styles 32-62 are assigned by the light program for switchable lights. Value is a set of
characters, whose ASCII value indicates a light level, from "a" (0) to "z" (30).

41

10.7.4. makestatic
voi d nmekestatic (entity e)

Make an entity static to the world, by sending a broadcast message to the network. The entity is then
removed from the list of dynamic entities in the world, and it cannot be deleted (until the level ends).

10.7.5. nextent
entity nextent(entity e)

Returns entity that is just after e in the entity list. Useful to browse the list of entities, because it skips the
undefined ones.

10.7.6. remove
voi d renove(entity e)
Removes an entity from the world.
10.7.7. setmodel
voi d setnodel (entity e, string nodel)
Where: e = entity whose model is to be set; model = name of the model (ex: "progs/soldier.mdI").

Changes the model associated to an entity. This model should also be declared by pr ecache_nodel .
Please set e. novet ype and e. sol i d first.

10.7.8. spawn
entity spawn()

Creates a new entity, totally empty. You can manually set every field, or just set the origin and call one of
the existing entity setup functions.

10.8. Movement Functions
10.8.1. ChangeYaw

voi d ChangeYaw)

Change the horizontal orientation of self. Turns towards sel f . i deal _yaw at sel f. yaw speed, and
sets the global variable cur r ent _yaw. Called every 0.1 sec by monsters.

10.8.2. droptofloor
fl oat droptofloor()
Returns TRUE or FALSE.

Drops self to the floor, if the floor is less than -256 coordinates below. Returns TRUE if landed on floor.
Mainly used to spawn items or walking monsters on the floor.

42

10.8.3. movetogoal
voi d novet ogoal (fl oat step)
Move self toward its goalentity. Used for monsters.
10.8.4. setorigin
void setorigin(entity e, vector position)
Where: e = entity to be moved, position = new position for the entity.
Move an entity to a given location. That function is to be used when spawning an entity or when teleporting

it. This is the only valid way to move an object without using the physics of the world (setting velocity and
waiting). DO NOT change directly e.origin, otherwise internal links and entity clipping will be invalidated.

10.8.5. setsize
voi d setsize(entity e, vector min, vector max)

Where: e = entity whose bounding box is to be set; min = minimum, for bounding box (ex:
VEC HULL2_M N); max = maximum, for bounding box (ex: VEC_HULL2_MAX).

Set the size of the entity bounding box, relative to the entity origin. The size box is rotated by the current
angle.

10.8.6. walkmove
fl oat wal knove(fl oat yaw, float dist)

Returns TRUE or FALSE. Moves self in the given direction. Returns FALSE if could not move (used to
detect blocked monsters).

10.9. Message Functions
10.9.1. bprint
void bprint(string text)

Broadcast a message to all players on the current server.

10.9.2. centerprint

void centerprint(entity client, string text)
Sends a message to a specific player, and print it centered.

10.9.3. sprint

void sprint(entity client, string text)

Sends a message to a player.

43

10.10. Network Messages
QuakeC is not supposed to handle a lot of network messages, since most are already handled in C.
However, built-in functions have not been built for every kind of message in the Quake protocol, so you
might end-up composing protocol messages in QuakeC. It is recommended that you build a single function
to handle a given message type, because the structure of those messages might change, and then all your
code would have to be rewritten to compensate.
Beware: when generating messages, you had better respect the format of the existing messages, otherwise
the game clients might not be able to interpret them (and will likely crash). The functions below all write to
clients (players connected via the network, or the local player).
For some reason, sending messages via M5G_ONE to a player that's just connected has no effect, as do
messages sent via M5G_| NI T. However, messages sent via M5G_ALL do get sent. Note that this also
appliesto sprint () (orany other function which uses a directed network message).
10.10.1. WriteAngle
void WiteAngl e(float to, float val ue)
This function writes a single byte, that represents 256 * (angle / 380).
10.10.2. WriteByte
void WiteByte(float to, float val ue)
10.10.3. WriteChar
void WiteChar(float to, float val ue)
10.10.4. WriteCoord
void WiteCoord(float to, float val ue)
10.10.5. WriteEntity
void WiteEntity(float to, entity val ue)
This function writes an entity reference, taking two bytes.
10.10.6. WriteLong
void WitelLong(float to, float val ue)
10.10.7. WriteShort
void WiteShort(float to, float val ue)
10.10.8. WriteString

void WiteString(float to, string val ue)

This function writes a string, terminated by “\ 0* (the null character in C).

10.11.

Precaching Functions

These functions are used to declare models, sounds and stuff, before the PAK file is built. Just follow this
rule: whenever one of your functions makes use of a file that's not defined in Quake, precache this file in a
function that will be called by wor | dspawn(). Then the QCC compiler can automatically include in the

PAK file all the files that you really need to run your programs.

Once the level starts running, these precache orders will be executed, so as to attribute a fixed table index
to all those files. DO NOT USE those functions in code that will be called after wor | dspawn() was called.
As a matter of fact, that could bomb Quake (restarting the level, without crashing the game).

Files can only be precached in spawn functions.

10.11.1. precache file

voi d precache file(string file)
Where: file = name of the file to include in PAK file.

Does nothing during game play. Use precache_fil e2() for registered Quake.

10.11.2. precache_model

voi d precache_nodel (string file)
Where: file = name of the MDL or BSP file to include in PAK file.

Does nothing during game play. Must be used in a model's spawn function, to declare the model file. Use
precache_mnodel 2() for registered Quake.

10.11.3. precache_sound

10.12.

voi d precache _sound(string file)
Where: file = name of the WAV file to include in PAK file.

Does nothing during game play. Must be used in a model's spawn function, to declare the sound files. Use
precache_sound2() for registered Quake.

Server-related Functions

10.12.1. changelevel

voi d changel evel (string napnane)

Warp to the game map named mapname. Actually executes the console command "changelevel" +
mapname, so if you want to alias it...

10.12.2. setspawnparms

voi d set spawnparns(entity client)

Restore the original spawn parameters of a client entity. Doesn't work if client is not a player.

45

10.12.3. stuffcmd
stuffcmd(entity client, string text)
Send a command to a given player, as if it had been typed on the player's console. Mostly used to send the
command "bf “, that creates a flash of light on the client's screen. Don't forget the “\ n “ (newline) at the end,
otherwise your command will not be executed, and will stand still on the console window.
Examples:

stuf femd(sel f, "bf\n");

stuffcmd(sel f, "nane Buddy\n");
10.13. Sound Functions

10.13.1. ambientsound

voi d anbi ent sound(vector position, string sanple, float volume, float
att enuat i on)

Where: position = position, in 3D space, inside the level; sample = name of the sample WAV file (ex:
"ogre/ogdrag.wav"); volume = 0.0 for low volume, 1.0 for maximum volume; attenuation = attenuation of
sound.

An ambient sound is emitted, from the given position.

10.13.2. sound

voi d sound(entity source, float channel, string sanple, float volunme, float
attenuati on)

Where: source = entity emitting the sound (ex: self); channel = channel to use for sound; sample = nhame of
the sample WAV file (ex: "ogre/ogdrag.wav"); volume = 0.0 for low volume, 1.0 for maximum volume;
attenuation= attenuation of sound.

The entity emits a sound, on one of its 8 channels.

46

11. Functions That Are Mandatory in QuakeC

These functions must be defined in QuakeC, since they are invoked by Quake under certain conditions.
11.1. Behavior of Players
11.1.1. PlayerPostThink
voi d Pl ayer Post Thi nk() ;
Called with self = player, for every frame, after physics are run.
11.1.2. PlayerPreThink
voi d Pl ayer PreThi nk();
Called with self = player, for every frame, before physics are run.
11.2. Management of Network Game Clients
11.2.1. ClientConnect
void dientConnect ();

Called when a player connects to a server, but also, for every player, when a new level starts. It is used to
announce the new player to every other player.

11.2.2. ClientDisconnect
void dientD sconnect();
Called when a player disconnects from a server. Announce that the player has left the game.
11.2.3. ClientKill
void dientKill();
Called when a player suicides.
11.2.4. PutClientinServer
void PutdientlnServer();
Called after setting par miL. . . par ml6.
11.2.5. SetChangeParms
voi d Set ChangePar ns() ;

Call to set parms for self so they can be restored.

47

11.2.6. SetNewParms
voi d Set NewPar s () ;

Called when a client first connects to a server. Sets par ml
restarts.

11.3. Miscellaneous
11.3.1. main
void main();
Only used for testing progs.
11.3.2. StartFrame
void StartFrame();

Called at the start of each frame.

... parnml6 so that they can be saved off for

48

12. Network Protocol

12.1. Message Structures

Here are some of the messages defined in the Quake network protocol. Beware, the structure of those
messages might change in future version (Satan forbid!).

12.1.1. Set View Position
nsg_entity = player
WiteByte(MSG ONE, SVC SETVI EWPORT) ;
WiteEntity(MSG ONE, canera);

This message is meant for a single client player. It sets the view position to the position of the entity
camera.

12.1.2. Set View Angles
nsg_entity = player
WiteByte(MSG ONE, SVC SETVI EWANGLES) ;
WiteAngl e(MSG ONE, canera.angles Xx);
WiteAngl e(MSG ONE, canera.angles_ y);
WiteAngl e(MSG ONE, canera.angles z);

This message is meant for a single client player. It sets the orientation of its view to the same orientation as
the entity camera.

12.1.3. Temporary Entity
Wit eByt e(MBG_BROADCAST, SVC_TEMPENTI TY) ;
Wit eByt e(M5G_BROADCAST, entitynane);
Wit eCoor d(MSG_BRQOADCAST, origin_x);
W i t eCoor d(MSG_BROADCAST, origin_y);
Wit eCoor d(MSG_BRQOADCAST, origin_z);
12.1.4. Set CD Track
WiteByte(MBG ALL, SVC CDTRACK) ;
WiteByte(MsG ALL, vall); // CD start track

WiteByte(MsG ALL, val 2); /1 CD end track

49

12.1.5. Final Message
WiteByte(MSG ALL, SVC FI NALE);
WiteString(MSG ALL, "any text you like\n");
12.1.6. Sell Screen
WiteByte(MSG ALL, SVC SELLSCREEN);
Shows the infamous sell screen (like you needed it to understand).
12.1.7. Intermission
WiteByte(MSG ALL, SVC | NTERM SSIQN);
Shows the intermission camera view.
12.1.8. Killed Monster
WiteByte(MSG ALL, SVC KI LLEDMONSTER);
Increase by one the count of killed monsters, as available to the client.
12.1.9. Found Secret
WiteByte(MSG ALL, SVC FOUNDSECRET);

Increase by one the count of secrets founds.

50

13. Execution

13.1.

13.2.

13.3.

Code execution is initiated by C code in quake from two main places: the timed think routines for periodic
control and the touch function when two objects impact each other. Execution is also caused by a few
uncommon events, like the addition of a new client to an existing server.

The interpretation is fairly efficient, but it is still over an order of magnitude slower than compiled C code. All
time-consuming operations should be made into built-in functions.

Preset Globals
There are three global variables that are set before beginning code execution:
entityworl d; /1 the server's world object, which holds all
/1 global state for the server, like the

/1 deathmatch flags and the body queues.

entityself; /1 the entity the function is executing for

entityother; /1 the other object in an inpact, not used for
/1 thinks

float tinme; /1 the current gane time. Note that because the

[l entities in the world are sinul ated

/1 sequentially, time is NOT strictly increasing.
/1 An inpact late in one entity's tinme slice may

/1 set tine higher than the think function of the
/1 next entity. The difference is limted to 0.1

/1 seconds.

It is acceptable to change the system set global variables. This is usually done to pose as another entity by
changing self and calling a function.

Runaways

There is a runaway counter that stops a program if 100000 statements are executed, assuming it is in an
infinite loop.

Profiling

A profile counter is kept for each function, and incremented for each interpreted instruction inside that
function. The "profile" console command in Quake will dump out the top 10 functions, then clear all the
counters. The "profile all" command will dump sorted statistics for every function that has been executed.

51

13.4.

13.5.

Composition of Functions

Composition of functions is not supported since all the functions use a single parameter marshaling area
and a single global variable to store their return result. You should NEVER try to call a function within
another function call. For example:

afunc(4, bfunc(l,2,3));
will fail because there is a shared parameter marshaling area, which will cause the 1 from bf unc to
overwrite the 4 already placed in par m0. When a function is called, it copies the parameters from the
globals into its privately scoped variables, so there is no collision when calling another function.

total = factorial (3) + factorial (4);
will fail because the return value from functions is held in a single global area
However, the following will work:

dprint(ftos(self.inmpulse));

This appears to be only composite function allowed.

Program Flow

The following diagrams show the more common program flows during particular client events and states. Of
particular interest is the handling of new clients, which is an event distinguishable from a level change only in
the state of the client entity variables, the execution flows are identical (and as a result, care should be taken
in storing/recalling client state across respawns and levels).

52

13.5.1. Client Connection/Changelevel

d i ent Connect ()

v

Put d i ent | nServer ()

v

Sel ect SpawnPoi nt ()

v

Decodelevel Par ns()

New
Episode?

Pl ayer PreThi nk()

v

Set NewPar s ()

Pl ayer Post Thi nk()

53

13.5.2.

Suicide

dientKill()

v

Put d i ent | nServer ()

v

Sel ect SpawnPoi nt ()

DecodelLevel Par ns()

New
Episode?

Set NewPar s ()

Pl ayer PreThi nk()

v

Pl ayer Post Thi nk()

13.5.3.

Death

dientobituary()

v

Pl ayer PreThi nk()

v

Pl ayer Deat hThi nk()

v

Pl ayer Post Thi nk()

54

13.5.4.

Respawn

r espawn()

v

Sel ect SpawnPoi nt ()

Set SpawnPar ns()

Set NewPar ns ()

v

Put d i ent | nSer ver ()

v

d i ent Connect ()

v

Put d i ent | nSer ver ()

v

Sel ect SpawnPoi nt ()

v

Decodelevel Par ns()

New
Episode?

Set NewPar ns()

Pl ayer Post Thi nk()

55

14. Tips & Tricks

14.1. QuakeC

You cannot initialize a variable with default values

If you give a default value to a QuakeC variable, this variable will be considered as a constant. And since
the value of constants is not supposed to change, your program may not work properly after that.

Constants cannot be given the value of a constant

Constants must be given the value of a literal only. Constants set equal to the value of another constant will
return unpredictable results.

Coordinates are relative to the world

All the geometry (coordinate positions, directions, angles) are relative to the world. They are never relative to
a given object. To know the direction an object is facing, you have to require calculation of the v_f r ont
vector (respectively v_ri ght and v_up for the right top).

14.2. Compilation of QuakeC
The language is strongly typed and there are no casts.

Source files are processed sequentially without dumping any state, so if a file is the first one processed, the
definitions in that file will be available to all subsequent files. Nothing may be references without first
defining it.. Names can be defined multiple times until they are defined with an initialization, allowing
functions to be prototyped before their definition.

Error recovery during compilation is minimal. It will skip to the next global definition, so you will never see
more than one error at a time in a given function. All compilation aborts after ten error messages.

Beware of the QuakeC compiler!
14.3. Frequently Asked Questions about QuakeC

14.3.1. How do | combine QuakeC patches?

Despite what some people may tell you, QuakeC patches may not be combined by using multiple “ —gane”
parameters on the command line, nor by using multiple PROGS. DAT files. The only way to combine
patches is to get the QuakeC source for both patches, and combine the code by hand. This typically
requires some expertise with QuakeC, and is generally not an easy task, given that much QuakeC code is
uncommented.

14.3.2. When | compile valid code, the QuakeC compiler crashes, or | get error messages |
know are false, what's wrong?

The QuakeC compiler has certain values hard-coded into it, such as the maximum number of globals.
Chances are, you code has exceeded this limit. According to Dave "Zoid" Kirsch, the crash-and-burn
behavior of the compiler doesn't mean you're out of luck:

"Conpiler ran out of globals. You need to edit MAX GLOBALS in one of the

QCC.Hfile for gcc and build a new qcc. Quake will load up the progs fine.
It's a qcc thing, not a quake thing."

56

Lee Smith, the author of ProQCC, has modified the latest version (v1.52) with larger table sizes in order to
work around the problem.

14.3.3. When | start a game with “-dedicated”, | get some messages, then nothing. What's
wrong?

Nothing is wrong. What is happening is that when the “- dedi cat ed” parameter is specified, the game
starts in console mode only. The messages you are seeing are the diagnostic and precache commands
that are executed when the server starts. If you want some information on what the server is doing at this
point, you can type “st at us” at the console.

For somewhat similar reasons, you can ignore the warnings about “vi ewsi ze”, “j oysti ck”, etc.

commands. They do not have any meaning in the “- dedi cat ed” context, and the Quake engine rejects
them out of hand, generating the warnings.

14.3.4. How do | change the viewpoint?
You would like that a given player sees through the eyes of another entity. This commonly happens at the
end of the level (all players see through a camera), or when the player head is severed (gibbed), or when a

player is invisible (he only exists as his eyes).

But the example above works by changing the player entity, and what you want is probably just to see
through a camera (Duke3D) or a missile (Descent).

This operation is known in the Quake network protocol as a setview message. But nowhere is it defined in
QuakeC, and there's no function to change the view port. So the solution is to encode a set view port
message, followed by a set view angles message (to take the orientation of the camera). This works fine,
except that if for some reason the entity you are using as a camera was not previously declared to the client,
then the view port will be setto '0 0 0', which is usually somewhere in the void.
14.3.5. How do | teleport a player into another server?
Not really, although you can use a few tricks to make something like it.
First, create an entity, such as a slipgate, and set its touch field to the following function:
voi d() changeserver = {
/!l set the entity touch function to point here
// other = entity that touched
if(other.classname == "player") stuffcnd(other, "connect server.address\n");
b
When the slipgate is touched, the entity jumps to another server by virtue of the st uf f cnd() . However,

the player stats and weapons will not be preserved, and the player would be dumped to the console if the
other server were full or not available, which makes it of little use.

14.3.6. Can QuakeC bots be listed in the player rankings, or have proper shirt and pants
colors?

Yes, but it requires a hack of the Quake network protocol. The bot must be assigned a client number from
the pool available (there are naxpl ayer s client numbers). The obvious downside to this is that is requires
the bot to take a slot that ordinarily would be available for a human player.

57

Once the bot has it's own client number, it can be assigned it's own colormap and broadcast it's name and
frags to the clients. Note that since the bot is not really a client, every time the bot’s colors, hame, or frag
count changes, the change must be forced by sending out another broadcast message.

Alan Kivlin (alan.kiviin@cybersurf.co.uk) has an example of how this might be accomplished in his QCBot.

14.3.7. How do | manipulate strings in QuakeC?

Well, you can have any kind of strings, as long as they cannot be changed, since, PR_COWP. C, defines only
operations “=", “==", and “! =" on strings.

14.3.8. How do | assemble a piecewise centerprint from multiple strings?

In the DEFS. (Cfile, after the lines:
/1 sprint, but in mddle
void(entity client, string s) centerprint = #73;

Insert the following function definitions, all pointing to the same built-in function immediate:
void(entity client, string sl, string s2) centerprint2 = #73;
void(entity client, string sl, string s2, string s3) centerprint3 = #73;
void(entity client, string sl, string s2, string s3, string s4) centerprintd = #73;
void(entity client, string si, string s2, string s3, string s4, string s5) centerprint5 = #73;
void(entity client, string si, string s2, string s3, string s4, string s5, string s6) centerprint6 = #73;

void(entity client, string sl, string s2, string s3, string s4, string s5, string s6, string s7) centerprint7 = #73;

You are limited to assembling up to seven strings, since the maximum number of parameters in a QuakeC
function is eight (one is consumed by the pointer to the target entity).

14.3.9. How do | move an entity in QuakeC?

You have better not touch it's position fields, else some stuff in the C code might not be valid anymore. Use
the set posi ti on() built-in function to move an entity.

14.3.10. How to change the velocity of an entity (make it bounce off walls)?
Information by Greg Lewis.
It seems that an entity's velocity can't be changed in the Touch function of the entity. Making the
calculations there will be of no use. So just set entity.novetype to MOVETYPE BOUNCE,

entity.nextthink to 0.1 (to let it bounce off), and set enti ty. t hi nk to the name of a function that,
when called 0.1 second later, will setent i ty. vel oci ty to the right direction.

14.3.11. Howv to calculate the direction a player is facing?

Assuming the player is sel f, the entity field sel f . angl es contains the orientation angles of the player (as
set by moving the mouse).

58

Then the function nakever ct or s(sel f. angl es) will calculate three vectors, that point in the direction
the player is facing, but also to the right of the player (strafing direction) and to the direction the player is
standing.

Note that those vectors are normalized to 1, so if you want to know what lays 100 units in front of the player,
useself.origin + 100 * facing.

14.3.12. How to send a message to a client when he logs in?

14.4.

It has been noticed that using a spri nt () in function d i ent Connect () just plain doesn't send any
message at all. Maybe the client is not ready to receive messages at this point.

However, Doug Keenan (doug.keegan@tamu.edu) has reported he could send such a text message by
putting the spri nt () close to the beginning of the A i ent Connect () function. It doesn't work at the end

apparently.
Writing QuakeC Code

Here are some suggestions that you should really consider when writing QuakeC code that would make life
simpler for others when they read your code (and also for you to maintain it).

You want to develop code that others can re-use, or that can be mixed seamlessly with code written by
others. If you are reinventing the whole world all by yourself, you hardly need any help or counsel (by the
way, the first command is “+l i ght).

1) Please put comments in your code. Of course, the real gurus don't need comments. They understand
raw QuakeC, even compiled. They can even imagine all the parts of your code before they read them.
Even before you write them. But actually, they seldom read your code. Only normal people do.

2) Please tag the beginning and end of your modifications if you are fixing a code from someone else.
Also put a date, and put a reason for the fix.

3) Each time you create a new function, a new variable or a new field, please give it a name that will not
conflict with a function or variable defined by others. A rather sure way to do this is to prefix every name
with some abbreviated module name, or your initials, or whatever rare combination of three or four
letters.

4) Each time you implement some set of related functions, you should create a new QuakeC module, and
give it a name different from the existing ones. Please do not use one of the module names used by id
Software, this would be confusing. Try to be original, else we might end-up with two hundred modules
called | MPULSE. QC.

5) When you want to distribute some modified QuakeC programs: include a FI LE_| D. DI Z file explaining
in about fivie lines what your patch does, and where it should be stored in the archives (this file is to be
read by system administrators), a READVE. TXT file explaining in detail what your patch does, how it
does it, and what common files you had to modify. Include the . QC modules that you created from
scratch.

6) Consider distributing your patches as diff-style patch files.
7) You should compile and distribute a version of your code, as a single PROGS. DAT file, to be used by
those who just wanna have fun. Don't forget them, they largely outnumber the people who directly deal

with QuakeC.

8) Upload your QuakeC patches to the primary quake ftp site at ftp.cdrom.com. Be sure to follow the
submission guidelines posted there.

59

E

as escaped qUOLALION MANKc.cvceeeireecierseeeese s 7
#

ashbuilt-in function iMMEdIAe........c.cccvvrivenernereen s 4
*/

as extended COMMENE CIOSE........c.verereeniereirerseee e seesesseeseens 4
/*

as extended COMMENE OPEN ..ot snes 4
/i

8BS COMMENTcvvvrvereraeseeseese bbbt 4
\n

BSNEWIINE ...t 4,7,40, 46

BSVECLON DIACKELS. ..ot 4
A
assignment_statementc.ocoeeeeeneereeeeneen See gtatement:assignment
B
built-in function immediate

EXAMPIEOF .. 4
C
(605 011 1 0 o1 OO 58
command line parameters

-dedi Cat @0 ... 57

COMPOSItioN Of FUNCHONS.......c.oeeeeereeiree et 52
compound_statementc.oceereereerereereenens See statement:compound
condition
(0= 101 o 1RO OO 12
(00101 = | AP 9, 56
OeClaraion OF ... 9
01020 < 11107 ST OO TSR T 14
(000 (0107 (=TT 56
D
GAMBOE ... eveeeeerreieere st ntes 17
OEEEN ...t 18
DEFS. QUi sesisssesss st sssesassssssssssnses 8,58
(0= 1] 0] (= ST 2

L= 01111V 7,8,17,23, 25, 38, 42, 46, 58
EClAr@AION OF ... sens 8
AYNAMIC......cecvcieiecire e 25

(o (=] 0 OO 25
MEXiMUM NUMDEY OF ..ot 25
FEMOVING c..cteveereiriserseessssssssssssssesssssssesssessessesassssssssssssesssssssesans 25
I e 31
CHAMBGE o 17

B0 [T To | - Vo IO PO 18
B F BT S s 20

[T =] 3R 15
CITOVEL YPC ottt 17

L NEXE L NI NK e 28
SOl T Qe 16
SPAWNT | BOS et 19
EXAMPIEOF ..o 8
100 = {107 OOV 26

LS 0 1o OO 31
SEQUENCING .vvvevrrerssesseessesssessesssssssesssssssessasassessesssessssssssssesssssssssans 23
SEBIC ..ottt 25
(o (=] 0 OO 25
TEMPOTAY ..o nses 14,25

EXECULTION. ...ttt 51

(015 Lo o PR 10

F

FAOING ettt 59

filetypes
c LBMuc ettt 6
VDL e 5

function
BUITE-IN. et 36
= o PO 39
AMDIENESOUNG ... nanens 46
= 010 = 0 010 o U TTR 36
DPIINE ..ottt 43
0= R 40
o | PP 36
(05 0105 1 01710 | OO 43,58
ChANGEIEVE ...t 45
ChaNQEY @I ..ottt 42
CheckBOOM ... 38

(1015 3111 1= GO
case-sensitivity of ...
[IMITAHONS ON ..ot bbb ee

IT_SEAtEMENT ...t

immediate

L
(7= 016 00 OO 36
1EXICAl FEMEN......oeeee ettt 2
lighting.....ccceeueeee .20
literd 3
numeric....... 4
iNtegerccveeeeee 4
..... wd
(== R 4
..... wd
AV[< o: (o gUPO i
..... wd
(S (] o [4
exampleof 4
JOCEL ..ottt 8
localemd()
EXAMPIEOF .ottt 40
100p_StAEMEN ... See statement:loop
WILEANGIE.....e ettt eeen 14 M
WriteByte
WriteChar
WriteCoord ... mmmmmm— 44 MAX_GLOBALS ..ottt esisesssressssssssasssessesens 57
. X INIESSE0E. ... vrerisere e isesessss s b st se s se bbb snbenas 44,49
WriteEntity Fina Message 50
WWITELONG ettt sneen
WWILESNOM ..ottt en

SEtVIEW ANGIES.....coiecirieeistsesesss e sss st ssssssnans
mandatory . i
CHEMOOMNELE s 47 Set View Position...

ClientDisconnect ... s TemMPOrAY B e
(O 011 N

PlayerPostThink
PlayerPreThink ..o seeeeees

PULCTIENtINSEIVES ... ses e 47
SetChangeParms....
SANEWPATTS. ... —— 48 TTIOVEIMEME it

if 12
OeClaraion OF ..o 12
[OOP ettt 12
Sttt 12
while
OeClaraioN OF ..o 12
S 2 (<P See function:frame
string_literalooceveureecereencnnne Seeliterd: string. Seeliteral; string
subprogram
Lo 111 oo TSSO 13
OeClaraioN OF ... s 13
declaration reqUITEMENLc.ocurceereereeeeeeseenee et eseeseseesseseanenns 13
limitations on caling ParamEtErs..........oeecereereneererenseneerenseneanenns 13
limitations on formal parameters.........ooeecerereneenerensenerenseneenenns 13
So'c o] TTors (To] o TR See function, procedure
subprogram_declaration..................... See subprogram:declaration of

FoTs o= OO OSSP 10
MUIPIICEEION ..ottt en 11
PIECEOENCE......ceeeeereaeeereaeeeeresseee s e sesseaee e sesse s sss st eesesnenen 10
TERBTONGL ... 10
UNBEY ettt s s 11
P
PASING AMDIGUILY ..vovucvecieieieieiesss s sssssssssssesssssssessssenes 7
PR ICOVP. C....ootrirerreisseeieeisesssesssssssssssssssssssesssesssesssssssssssssnes 58
PrBOMBL ...ttt en s 5
R o7z S OO 5
PO cetrrerereeeseseeeeseseesss s ess bR 5
R (' 3OO 5
STz 1.1 5,26
R 11016 g YOO 5
POMTGIN reerreeeseeesseeeeseeeesseeeessesesssessssseesssseess e st sness e st sssssessssnees 5
R o [OOSR 5
BRI coerreereeeseeeseeeesseeesseeeesseessseess e ss st et ettt esnst s 6
PrOCEAUIE ...ttt sttt en 13
LS oTc o) TTor (Lo o FNNE OO 13
profiling
00 1= TTT 51
PrOfIIEEI ..o 51
[101111 o OO OO PTTRN 51
PROGS. DAToortinireerseesseeeesesesesssesssessssssssssssssssesssesssessssssssssssssses 56
PROGSL06. ZI P...corerieireeirerinirsirseesssessssssisesisesssssessssssssassssessnes 1
PrOQCC ..ottt st ss st sssseen 1,57
Q
OOC wverrererssersessssss st 57
QCCH ettt 57
(o o o A | G AT 1
QCCDGE. EXE.....oiteeieierieieinessssesssssssisestsesssesssessssssssssssssssssssessnes 1
R
real_literal ... See litera:numeric:red
TUNBWEY COUNMEESovriuteneeeereenetsesasesesesessesssesseese s ssesssessesssssenas 51
S

L0 = 1100 [o Lo O TR 7

ECIAON OF ..ot 7

LS (] o PO PSR UTTPTRRTN 7

deClaration OFc.ccreieeeiieeeresersere s 7

VECIO. ...t 7

deClaration OFc.ccreieeeiieeeresersere s 7

FIEIOS. o 7

VOIO oottt 7
types

EFINING NEW ..ottt 7

V

VATADIE ..ottt 8

eClaration OFc.ccorreeireeeeee ettt 8

GIODA ... 8,9

1056 = 1107 OOV 22

COOP -t ereurereaeereenessessseeseesessessee s sesesse s essesssessessbessesssessasens 22

dEANMEALCH........ccevece et 22

fOrCE _FEHOUCN ...t 22

FOUNO_SECIELS.....ceoceee et 22

FrAMEIME ... 22

KIlled MONSLENS......ocereeieereeieereeseeeressee e 22

IMBNBIIE.cereeerenreeereseaesseseeesesesessesassseseasssesssssesesssesnasens 22

001 o= 2T 23

(0] OO 23

PAML. .. PAMNLG ... 23

S s 23

SEVETIAOS. ..ot 23

1022 010 YOO 23

T e 23

tOtAl_MONSEENS.... ..ot 23

0]z TS < 0 (= (ST 23

WOTTO ottt 24

INITAlIZING ..ttt 56

VECtOr_literalc.vvereeererecree s See literal:numeric:vector

62

63

