
client.qc

Player spawn code exists here in function "putclientinserver", this includes metadata for the player, like
bounding box size, movetype, camera offets and whether the player is solid, etc.
Respawn code also resides in this file.

Player start items are set here.

Contains useful functions "playerprethink" and "playerpostthink" which are executed before and after
physics respectively, these are run every frame, so tend to be a good place to insert time-critical code.

player.qc

Sets player animations,
and sounds.

monster funcs

When the map is loaded each monster placed will spawn a monster
associated with it's classname. For example, if the map contains a
monster_zombie entity, the function monster_zombie will be executed.
These will typically be in their own qc file, i.e. zombie.qc.

Monster qc files contain animations and the logic tied to each animation
frame.

Almost all quake monster actions are tied to a certain animation frame.

Monster qc files usually have the logic for their projectiles, deaths, pain
sounds, and whether to charge or shoot.

ai.qc

This file contains more generic logic for monsters,
this includes:

Enemy visibility, range to enemy, whether enemy is in
front of monster, target priorities, patrolling, alerting
fellow monsters and decision making.

monsters.qc

What happens when a
monster is targeted by a
trigger.

Actually place the monster
in the world.

fight.qc

Check if the monster should be
attacking at the moment.

items.qc

Places items and weapons in map. Sets
their sounds, models, effects, values
(ammo amounts, etc) and pickup
messages.

misc.qc

Places, lights, traps, and
ambient sounds in the map.

triggers.qc

Responsible for placing trigger
entities in world and how they
interract with each other.

This includes trigger_pain,
monsterjump, teleport, etc.

buttons.qc, doors.qc, plats.qc

Buttons, plats (lifts) and doors
all share fairly similar movement
logic and are each in their respective
files.

func_trains are in plats.qc and interact
with a target, typically a path_corner
which is spawned in ai.qc

Load map

Select Weapon

weapons.qc

Runs ImpulseCommands function
to determine how weapon is being
selected.

Function W_ChangeWeapon:

Checks which button has been
pressed, whether the player has the
correct ammo and has the weapon.

Outputs a message if no weapon or
ammo.

Changes the weapon if criteria are
met.

Function W_SetCurrentAmmo:

Changes the current ammo type to
be incremented or decreased.

Sets which weapon the player is
holding and resets animations for it.

Function CycleWeapon(Reverse)Command:

Cycle to the next weapon in the weapon
order that the player has and has the
ammo for.

Fire Weapon

weapons.qc

Function W_Attack:

Decide which way is forward for aiming
purposes.

Set time flag so that monsters know
when they should stop getting alerted
by the player.

Set timeout so we know how long until
we can attack again.

If we have the ammo for it and the weapon
decide which weapon we should fire and
set the correct player animation for it.

Float W_CheckNoAmmo
(floats are treated as boolean in some cases):

Do we have ammo or are we holding the axe?

Function W_BestWeapon:

We don't have ammo, so select the
best weapon that we have the ammo
for.

no

no

yes

player.qc

Animate the player model with the appropriate
animation for the weapon we're firing.

Function W_Fire(Weapontype):

Get the aiming direction.
Spawn any projectiles or beams.
Set time to live for projectiles.
Set grenade explode timers.
Reduce ammo by appropriate amount.
Set amount of damage inflicted to enemy or
world (buttons).

Jump

player.qc

Function PlayerJump:

Makes sure player isn't already in the air.
Checks the waterlevel, adds upward velocity
if underwarter, or under slime or lava.

Plays swimming sound if in water.

Sets player flag to indicate player is off ground,
gives upward velocity to player.

Touch Item

items.qc:

functions:
health, powerup, sigil (rune), ammo, armor,
weapon, key, and backpack_touch

Functions do the following:
check is player alive
check is it deathmatch
check is an upgrade needed
sends pickup message
flash background
update player inventories
update powerup flags
update next think time for powerups
remove item from map, if deathmatch
set when to respawn
fire triggers associated with items

SUB_regen:

regenerates the item for deathmatch

makes item touchable and visible
plays the respawn sound, places it at the
correct location

respawns

SUB_UseTargets:

check for delays and fire in future if necessary
check for killtarget (self.killtarget) and remove from map
print user defined message (self.message)
play sounds (self.noise)

